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A NEW DECONSTRUCTIVE LOGIC: LINEAR LOGIC 

VINCENT DANOS, JEAN-BAPTISTE JOINET, AND HAROLD SCHELLINX 

Abstract. The main concern of this paper is the design of a noetherian and confluent normalization 
for LK2 (that is, classical second order predicate logic presented as a sequent calculus). 

The method we present is powerful: since it allows us to recover as fragments formalisms as seemingly 
different as Girard's LC and Parigot's A.u, FD ([10, 12, 32, 36]), delineates other viable systems as well, and 
gives means to extend the Krivine/Leivant paradigm of 'programming-with-proofs' ([26, 27]) to classical 
logic; it is painless: since we reduce strong normalization and confluence to the same properties for linear 
logic (for non-additive proof nets, to be precise) using appropriate embeddings (so-called decorations); it 
is unifying: it organizes known solutions in a simple pattern that makes apparent the how and why of their 
making. 

A comparison of our method to that of embedding LK into LJ (intuitionistic sequent calculus) brings 
to the fore the latter's defects for these 'deconstructive purposes'. 

?1. Introduction. It has long been thought that classical logic cannot be put to 
use for computational purposes, as in the 'programming with proofs'-paradigm, 
based upon the so-called Curry-Howard correspondence ([17]) between proofs in 
intuitionistic logic and A-terms (providing, on the theoretical side, a mathematical 
foundation for functional programming languages, and, from a more practical 
point of view, a method of programming which ensures correctness of programs, 
cf. [26, 27]). "Classical logic", it was said, "is non-constructive", also in this, 
highly specific, sense. This, however, turned out to be no more than a, somewhat 
longstanding, prejudice (as witnessed by our 'programming theorem' in the last 
section), nurtured by the fact that nothing better than a mere cut-elimination (weak 
normalization) theorem was to be found in the proof theory of classical logic. That 
is before the attempts of the last few years. I 
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l Some exceptions are Prawitz's strong normalization for classical natural deduction, and Dragalin's 
'strong form of the normalization theorem' for LK, in [6]. Note that Dragalin's result only holds with 
respect to a specific strategy for eliminating the cuts: a cut, one of whose premises ends in a cut, while the 
other one ends in either a cut or a logical introduction of the cutformula, is not considered a redex. Also, 
there is no reasonable possibility for a denotational semantics, no second order, et cetera. (For those 
familiar with Dragalin's proof a remark which will become clear later on: the difference does certainly not 
reside in the, from our point of view, somewhat unusual formulations of the logical rules in his calculus, 
i.e., we can prove 'tq-SN' for Dragalin's LK by 'simulation'.) Dragalin's proof was adapted to suit the 
two sided sequent calculus for LL by Roorda (see [43]), but observe that the resulting LL-normalization 
theorem is essentially different from Girard's strong normalization theorem for proof nets. 
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Right. But what would one gain, were it possible to obtain a Curry-Howard type 
correspondence between some 'abstract, rudimentary' programming language and 
proofs in classical logic? 

As is well known, by a result dating back to Kreisel ([21]), the interest can not lie 
in the access to new representable functions, as all functions representable, in, say, 
classical second order predicate calculus, are already so in the intuitionistic second 
order system (cf. also Chapter 10 of [22, 23]). However, one will have access to 
other proofs of theorems of the formVx (N(x) - * N(f (x))), and thus to other, and 
maybe more efficient, algorithms. Apart from the obvious theoretical interest, it is in 
this potential application that lies the 'classical logic constructivization'-quest's grail. 
But the question of new classical 'algorithms' only makes sense given an evaluation 
scheme, which in turn presupposes a syntax equipped with a normalization. 

Several such proof systems for classical logic have recently been proposed, notably 
LC (Logique Classique, [10]) by Jean-Yves Girard and FD (Free Deduction, [32]) by 
Michel Parigot. At first sight these do not seem to have much more in common than 
the bare fact of being both complete for provability. Girard's LC is distinguished by 
coming equipped with a denotational semantics, while Parigot developed an exten- 
sion of the A-calculus, the so-called Au-calculus, whose terms correspond to proofs 
in a (complete) 'fragment' of FD (the 'classical natural deduction'2 (CND) of [33]), 
thus extending the Curry-Howard isomorphism between A-terms and proofs in in- 
tuitionistic natural deduction to lu-terms and proofs in classical natural deduction. 

Our own approach is based upon earlier work on the linear decoration of deriva- 
tions in classical sequent calculus (see [18, 40, 4]). There we observed that restric- 
tions on classical derivations, comparable to those in Girard's LC, are induced by 
certain modal translations of classical into linear logic. Thus we defined calculi 
(we called them LKT and LKQ) that are complete for classical provability, and 
moreover interpretable as fragments of linear logic, hence inheriting linear logic's 
computational properties. Also we found that, e.g., LKT on the one hand properly 
contained a fragment (the negative one) of LC, on the other hand could interpret 
Parigot's CND: the seemingly very different solutions to the problem of a 'com- 
putational' classical logic apparently touch common ground in a 'linear image' of 
classical sequent proofs. 

This suggests the possibility of using embeddings of classical into linear logic as a 
classifying and clarifying tool: by reformulating the problem as that of identifying 
the possible ways in which one somehow faithfully can interpret classical sequent 
derivations as proofs in linear logic we (a) conveniently delimit the 'space' in which to 
look for constructivizations of classical logic, and (b) know that, due to linear logic's 
proof theoretical properties, success is guaranteed whenever such an interpretation 
is found. 

Our point of departure will be a most general and symmetric version of classical 
sequent-calculus, namely 'all-style' LK, introduced in Section 2.2. Surely if we 
can devise solutions within such a big system, we will be able in the aftermath to 
specialize them to fragments. (To quote a renowned French mathematician: "Tant 
qu'on n'a rien fait, pas la peine de refrener ses ambitions".) We then turn to the 
formulation and proof of the one basic result we will use about the normalization 

2Not to be confused with Prawitz's system of the same name. 
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of LL proof nets. This ends Section 2. In Section 3 we discuss 'pathologies' of LK 
with respect to normalization and show how linear logic unveils precisely these 
problems, and moreover suggests possibly adequate treatments. In Sections 4, 5 
and 6 we propose three different 'therapies', each of which is shown to correspond 
to a different kind of embedding of LK into LL. The following diagram, very, very 
roughly, summarizes the content. 

FD CND/Ai LC 

LK tq LK *- LK ) 

pletho string polaro 

Linear Logic 

In Section 8 we address the question whether for our analysis we could have used 
LJ as a substitute for LL and conclude that "well, not really". And in the final 
section we show that LK, augmented with equational reasoning, like LJ, can be 
used as a programming language. 

?2. Notations and other prerequisites. Let us introduce and explain some of the 
terminology that we will use with respect to our main objects of study, derivations 
in sequent calculi. 

2.1. General. Sequents are denoted by F r A, where =- is the entailment sign 
of the calculus, and F, A are finite multisets of formulas, i.e., sets with multiplicities, 
or (equivalently) lists modulo the order in which the entries are given. In particular 
exchange is implicit: {E, W, T, E} and { T, E, E, W} are identical as multisets. We 
denote the number of elements in a multiset F by IFl. E.g., I{T, WE, E} = 4. 

If fo maps formulas to formulas then, if F = {GI . . . , Gn },we write ~oF for the 
multisetf{oGO ..., oGn}. So!Fstandsfor{!G1,.*.,!Gn}, F*forf{Gj,...,G*I},et 
cetera. 

We use 'rhs' and 'lhs' for respectively 'right-hand side' and 'left-hand side' (of the 
entailment sign). 

The following conventions are used in distinguishing between the occurrences of 
formulas in a given logical rule, e.g., L --*: 

Fr 1 Al, A B, F2 = A2 
FIF2,A -* B => Al,A2 

The formula A - * B is called the main formula of the rule with main connective A 
the occurrences A and B in the premises will be referred to as the active formulas; 
all other occurrences are said to be passive and will be referred to as the context. In 
the special case of a cut, active formula occurrences are also termed cutformulas. 

In case of an identity axiom we say that both formula-occurrences are main. 
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We will restrict the use of the term 'main' to logical rules and identity axioms (we 
will sometimes speak of the axiom rule). In case of structural rules, if necessary, we 
speak of the weakened, respectively contracted formula. 

Given an occurrence of a formula A in a sequent derivation 7o, we will speak 
of "the tree of A's ancestors in 7r", meaning the tree-like structure obtained by 
tracing upwards in 7r all formula occurrences corresponding to our initial A, up to 
the introductions of A by axiom, logical or weakening rule (these form the tree's 
leaves). The reader who wishes to do so, will easily provide the (long and boring) 
inductive definition. 

In a rule 

a, a,, or / 

a is called the successor-sequent of a', a/" in or. Similarly we will speak of the 
successor in a of a formula occurrence in a', ac" (formal definition again left to the 
reader; using the terminology of [3]: the formula occurrence A in a is a successor of 
the formula occurrence A in a', ac" if and only if both occurrences are in the same 
identity class). 

A block (of sequents) in or is a sequence of sequents oio, ci1, . .., cI, in 7r such that 
ai+1 is a successor of ai. Note that a block of sequents unambiguously defines a 
block of (successive occurrences of) rules in or. 

Given an occurrence of a formula A in some sequent a in a proof oz, such that A has 
just been introduced (is 'newly born', i.e., is either main, or has just been weakened), 
we inductively define a sequence of occurrences AO, ..., A, of A together with a 
block BA of sequents co, . .., cIn, by 

(1) co := a, AO := A; 
(2) if ai E BA, Ai is not active, and ac+i is the successor of cii, then ci+1 E BA, 

and Ai+, is the successor of Ai in ai+?; 
(3) that's all. 

Hence BA will contain C, ci's successor, et cetera, down to either 7r's concluding 
sequent, or a sequent in which A is active. We will refer to BA as A's main-active 
interspace or m-a-interspace. 

With each active occurrence of a formula A, we can associate a finite set {BA,..., 
BAn } of m -a -interspaces, where each Ai corresponds to a leaf of A's tree of ancestors. 

2.2. LK. Our sequent calculus LK (Appendix A) for classical logic is a variation 
on Gentzen's original system ([8]). As said, this is a highly general and symmetric 
calculus, with first and second order quantifiers, containing axioms for the constants 
and rules for all binary connectives both in 'additive' and in 'multiplicative' style (a 
terminology that stems from linear logic, as does our motivation to represent LK 
precisely in this manner). 

As is well known, using the structural rules of weakening and contraction, these 
distinct formulations of the logical rules are interderivable (see also Section 5.7), 
and the two styles of the binary connectives are provably equivalent.3 In fact, the 

31t might amuse the reader to show (use cut!) that conversely these equivalences suffice to derive the 
structural rules moduleo a bit of weakening for the constants, as in linear logic, actually!). 
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'pre-linear' literature shows an even greater variety in formulations of the rules for 
the logical connectives, mostly without explicit motivation as to why the author(s) 
prefer(s) theirs over other possibilities. Often there simply is no reason to take this 
or that style, or, on closer reading, it turns out to be merely a matter of simplifying 
that or this technical detail. 

However, it is a (simple) insight we owe to linear logic, that the additive and 
the multiplicative group of rules 'an sich' stand out, in the sense that they are 
autonomous: both are closed under the cut rule (the key-steps in the elimination 
procedure do not involve structural rules), allow expansion of non-atomic identity 
axioms (cf. the definition of a-proofs in 5.4) and, in the presence of negation, allow 
for 'De Morganisation' of the connectives. In order to respect this autonomy we 
ask derivations in LK to be 'homo-style', and therefore distinguish additive and 
multiplicative versions of all binary connectives, and of the constants. (Note that 
hetero-style fragments do not have the first two of the properties mentioned above.) 

So, classical (propositional) formulas are defined in the usual inductive manner 
from an infinite set of atomic propositions P1, P2, . P. . , ... and the constants Tm, 
Ta, Im, Ia, the unary connective _ and the binary connectives A*, A+, Vm, Va, Am, 
Aa - 

The definition of terms and the extension to first and second order formulas 
proceeds as usual. 

In this paper we often deal with colouredformulas: each formula comes equipped 
with a mapping of its subformulas into a 'colour space' which we denote by {t, q}. 
When convenient, we will make explicit the colour E of the formula itself by means 
of a superscript: A". 

When talking about formulas occurring in a sequent, without being explicit 
whether they occur on the rhs or lhs, they will be written with a subscript: As, with 
s E {L, R} (like side). 

Thus also the meaning of A' will be clear. 
We use * to denote a(n unspecified) binary logical connective of unspecified 

style. I.e., * E { -, V, A} and a (like a tyle) E {a, m}. 
We use a 'bar' to indicate transposition within these two-element sets of symbols. 

For instance, T := q, R := L, m := a. 
2.3. LL. Linear (propositional) formulas are obtained from an infinite set of 

atomic propositions P1, P2, . ., pnn ... and the constants T, 1, 1, 0, using nega- 
tion (.)I, the exponentials !, ?, and the binary connectives -o, --*, A, (D, 0, &. 
The definition of terms and the extension to first and second order formulas again 
proceeds as usual. 

A formula in an LL-sequent F r A is said to be of type '!' (respectively '?') 
if it is on the lhs (respectively rhs) and starts with a '?' or on the rhs (respectively 
lhs) and starts with a '!'. (Think of the sequent in its one-sided (only rhs) form, 

FL,A.) 
A modality is a (possibly empty) sequence of exponentials. We denote modalities 

by u, v. 
At some points in proofs we will use a bit of the stripping theory of [3], which 

iS about how one can pluck exponentials in an LL-proof in such a way that the 
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'plucked' or 'stripped' proof is still a proof and reduces as the starting proof, up to 
dereliction and exponential commutation steps. Details in [3]. 

In Appendix B one finds the two-sided sequent-calculus LL for linear logic. We 
here mostly use this calculus as a convenient notation for proof nets. Actually we 
don't need the full apparatus of proof nets (as defined in [9]), but only the fragment 
consisting in: multiplicatives, exponentials (treated as in [2]), quantifiers (as in [11]) 
and so-called tamed additives, where binary additive boxes are asked to be of the 
form 

?A A ?A B 

?A A&B 
That is, all auxiliary doors are required to begin with a '?'. In the accordingly 
modified commutative reduction step the swallowed proof net is the !-box knocking 
at an auxiliary door. Thanks to the modified commutative reduction step this proof 
net system, denoted hereafter by taLL, is obviously stable by reduction. 

THEOREM 1. taLL normalization is noetherian and confluent. 

PROOF. Define the following mapping of LL-formulas to non-additive LL-formu- 
las by 

x0=X (A&B) _ -!A (,!B, (A ED B)0 = ?A0 P ?B0 

and 0 leaves all non-additive symbols (negation, exponential, multiplicative con- 
nectives and quantifiers) unchanged. (Exponentials with only weakening permis- 
sion, as defined in [3], would be sufficient.) An easy computation then shows that 
? extends to a one-one embedding of taLL proof nets in non-additive LL proof 
nets, which is a morphism with respect to normalization. To be precise, one gets 
a morphism if non-additive proof nets are identified when they only differ up to 
so-called 'contracted weakenings': 

?A ?A 
?A -, ?A 

Since the morphism is one-one and the normalization of non-additive proof nets is 
noetherian (cf. [9]) and confluent (cf. [2]) the theorem follows. - 

?3. Classical logic, what is wrong? In this section we will explain why naive 
cut-pushing steps are incompatible with a strongly normalizing and confluent cut- 
elimination procedure. For this there are two reasons, the structural and the logical. 
Adding suitable information to the proofs will allow the definition of a normaliza- 
tion scheme, which will be proven to be strongly normalizing and confluent in the 
next section. 
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3.1. Some information is missing. In LK, the naive cut eliminator will feel like 
Jean Buridan's donkey.4 

3.1.1. Structural dilemma. Consider the problem of getting a cut-free proof of 
A VmA =>A Am A, starting from: 

A ==A A ==A A ==A A==>A 
AVA ==AA AA==>AAA 

AVA ==A A==>AAA 
A V A =?, A A A 

To begin with, clearly we have to choose whether the proof of the left premise of the 
cut or that of the right premise is going to be duplicated. Suppose we take the left 
option. We obtain: 

A ==A A==>A 
A ==A A=> A AVA ==A,A A ==A A=> A 

AVA ==AA AVA ==A AA==>AAA 
AVA ==A A,AVA==>AAA 

A VA,A VA ==> A AA 
A V A ==> A A A 

Again, there are two possible choices (for each cut): either one persistently keeps 
on moving the same proof upwards and reaches the following normal form: 

A ==A A ==A A ==A A==>A 
AVA ==AA AVA-==A,A 

AVA-==A AVA-==A 
A VA,A VA =,= A AA 

A V A =-, A A A 
or, all of a sudden, one decides to move the proofs of the right premises of the cuts. 
It's easy to see that random sequences of choices can result in this case in infinite 
reductions and even arbitrarily big normal forms. Hence the procedure has to be 
persistent (i.e., has to push a cut up to the leaves of the tree of ancestors of one of 
the cutformulas) in order to be noetherian. 

Now the left-and-persistent option leads to a cut-free proof, which is quite dif- 
ferent from the one given by the right-and-persistent option. Hence the procedure 
apparently has to know in advance which option to take (i.e., which subproof should 
be transported) in order to be confluent. The simplest way out of this left/right 
dilemma is to, brutely, fix a protocol beforehand, by adding the missing information 
to formulas. We call it the colour. 

The resulting enriched system, the rules of which are just the good old rules 
of LK but now operating on coloured formulas,5 will be referred to as LKtq. By 
convention colour t (respectively q) prescribes the left (respectively right) option 
(or protocol as we shall sometimes say). Accordingly an occurrence of a coloured 

4Similar observations can be found in [10] and in [32]. 
5Alternatively, rules are supposed to preserve colours; yet in other words, colours may be assigned 

arbitrarily, provided they respect identity classes, cf. [3]. 
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FIGURE 1. The q/t dilemma. 

formula in the Ilhs (respectively rhs) of a sequent is said to be attractive if its colour 
is t (respectively q). This terminology is introduced in order to remind us that the 
proof of the sequent containing the non-attractive cutforfmula has to move first. 
We will often use an alternative iconic notation for At (respectively Aq), namely A 
(respectively +A). 

Note that choosing colours has nothing to do with imposing a strategy. We do 
not select redexes, but rather the way we want to reduce them. 

3.1.2. Logical dilemma. Consider two successive cuts on a given sequent As,..., 
Bs,. The order in which the cuts are performed really matters in case neither of 
As and Bs, is attractive, because as an easy computation shows, in that particular 
case, the proofs obtained by firing the two cuts will look seriously different depend- 
ing on whether the cut on As is made above the one on Bs, or not. For example, let 
us suppose that the sequent is Aq, ... ..., Bt. First cutting on Aq gives rise to 
the upper one of the two proofs in Figure 1, first cutting on Bt to the lower one. 

Now in the first case 7r, only duplicates (or erases) ir while 7r2 duplicates (or erases) 
both 7r, and 7r, whereas in the second case 7t1 duplicates (erases) both ir and Er2, while 
7r2 only duplicates (erases) 7r. 

In other words, the equivalence relation generated by these "seemingly innocuous 
permutations of rules"6 will be incompatible with our protocol. 

"Now why bother with that?", the reader may ask. "Just don't try to permute 
cuts, even if seemingly innocuous!" Right, but such concurrent cuts are the result 
of a multiplicative key-step, and to say that the order matters is just to say that we 
have to make a choice! For each multiplicative connective the dilemma will show 
up for exactly one distribution of the colours on the active formulas: (q, t) for A, 

6Quote from [10], p. 280. 
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(t, t) for Vm and (q, q) for Am, i.e., in case neither of the formulas active in the unary 
rule is attractive. 

Again, the simplest way out is to attach an additional bit of information: in 
what follows we assume the unary rules for the multiplicative connectives to come 
in two types, prescribing whether in the logical step the cut on A, is made first 
or not. Alternatively, one might orient the multiplicative connectives, where the 
orientation fixes the order of the cuts in the key-steps. Unlike for the colour of a 
formula, however, it is not necessary for an identity class to respect orientations, 
which is the technical formulation of the fact that introducing oriented connectives 
is a solution to the logical dilemma, but more drastic than strictly necessary. The 
system obtained, having either oriented rules or connectives, will still be called LKW'. 

3.2. The tq-protocol. In this subsection we define a normalization-scheme for 
LKtq, which suits the analysis of Section 3.1, and to which we will refer as the 
tq-protocol. In each instance of a cut rule in an LKtq-proof, the cutformula will be 
coloured either t or q. Thus, using our iconic notation, cuts are of one of the two 
following forms: 

A A - A A 
===> and =and 

Let us call the subderivation containing the attractive occurrence of the cutformula 
the attracting subderivation. 

DEFINITION 2 (tq-protocol). Reduction according to tq-protocol proceeds via 
two possible types of steps, 'structural' ones, S1 and S2, and 'logical' ones, L 
('key-steps'): 

- An L-step applies when both cutformulas are main in a logical rule, in which 
case we obtain as descendants one or two cuts on the immediate subformula(s) of 
the cutformula. The order in which these cuts are applied is determined by the 
orientation. 

- In case no L-step is applicable, necessarily an S-step applies, which consists 
in 'transporting' one of the cut's subderivations up the tree of the cutformula's 
ancestors in the other one, duplicating it and contracting the context whenever 
passing an instance of contraction (or via the context of a binary additive rule); this 
process ends when reaching instances of introduction in an axiom, in which case 
the resulting 'axiom-cuts' are reduced immediately, when reaching an introduction 
by weakening, which are replaced by weakenings of the context formulas, or when 
reaching instances of introduction of the main connective of the cutformula. 

Of course, now one needs to know which of the two subderivations has to move. 
This is decided by asking whether or not the attractive cutformula is main in a 
logical rule. If the answer is "yes!", we transport the attracting subderivation (S2); 
if it is "no!", we transport the other one (S1). 

And that's it. 

Let's define the energy of a cut c as the pair (d (A), s (A)) where d (A) is the number 
of symbols in A and s (A) is the type of the tq-reduction-step applicable to c: S1, S2 
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or L. By definition of those steps, when applied to c, the energy of (the descendants 
of) c decreases (energies are lexicographically ordered, with SI > S2 > L). (Except, 
of course, in a second order quantifier L-step, where the possible increase of d (A) 
is out of control.) 

At this point the reader might try his left hand at proving the following. 

THEOREM 3 (Weak normalization theorem). In first order LKtq the cut rule is re- 
dundant. 

In fact the induction argument can be kept surprisingly simple: suppose ir is a 
proof and c a cut in ir with cutformula A. Now, to deduce from the remark above 
the usual key-lemma in a cut-elimination proof 'a la Gentzen' (see, e.g., [41]), it 
suffices to show that the energy of (descendants of) any cut other than c in ir never 
increases. Our forthcoming so-called 'stability-lemma' (Lemma 16) will establish 
this 'decrease of energy'-property. 

Note that, in contrast to the usual proofs of cut-elimination, we do not need 
explicitly the notion of 'multi-cut'. In a certain sense that notion is implicit in our 
definition of the structural reduction steps. 

This simple weak normalization proof is a foretaste of the 'good quality' of the 
tq-reduction scheme. 

Note also that, following the tq-protocol, no "inconsistent" permutations of cuts 
(as described in the "logical dilemma") can occur. We leave it to the reader to verify 
that whenever one of both cutformulas is main, the reduction is independent of 
the cutfomula's colour ('t = q') and that adding to the tq-protocol an axiom-step, 
saying that a cut with an identity axiom may be removed whatever the colour of the 
cutformulas, is conservative over the above definition. (Also, the protocol is easily 
extended so as to include cuts on axioms for the constants. We will however not 
consider the case of the constants, neither here, nor in the sections to come and 
leave their treatment to the zealous reader.) 

A remark as to why we ask the immediate reduction of axiom-cuts appearing in 
the course of an S-step: this in fact is a 'sine qua non' for strong normalization. 
Consider the following example: 

AD==A A===A 
AD==>A AD==>A 

A ==> A 

where not absorbing the axiom gives rise to a cyclic reduction. Anyway, our strong 
normalization argument forces this absorption. 

If we consider this procedure as defining a reduction of LK (i.e., we forget about 
the colours), then note that there is no ambiguity whatsoever in applying a structural 
step except for the choice, at each given instance of a cut, which of the two cutfor- 
mulas is going to be the attractive one. Once the choice has been made, as in LK 
the tq-protocol completely determines the structural phase of the reduction. 

Having defined what we mean by 'normalizing' an LKtq-proof, let us reconsider 
the logical dilemma. Recall that there is, possibly, a dilemma, only in case both 
formulas are attractive: then it might happen that the two cuts do 'not commute'. 
We are now in a position to verify this in detail, by computation. Let's have another 
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look at a problematic situation, e.g., as in Figure 1. If we denote the two possible 
configurations by 1Ii and 112, and write IV, HP (respectively TVB) for the reduct 
of fII, obtained by performing the appropriate tq-reduction-step for the cut on A, B 
(respectively for the cut on A and for the cut on B), then one can show by inspection 
of all possible cases that the following holds. 

LEMMA 4. If A in 7n (or B in 72) is main or non-attractive, then T1A = TIA (or 
EIl = HIe); hence if at least one of A in 7nk, B in 7n2 is non-attractive or main, then 

IAB = fJIAB 

However, when the conditions of the lemma are not fulfilled, equating 1Ii and HI2 
is inconsistent with our protocol. For instance, take 7ri and 7n2 to be respectively: 

F A 
FA A,B 

with A and B both attractive, then one obtains for TIA4B and JIAB respectively: 
i 12 

U2 

A 
AFI A',r 

where F' (respectively A') is the union of contexts in the conclusion of 7r' and 7n 
(respectively 7r' and 7r). As 7r' and 7n/ are arbitrary, equating H1- and 112 would 
amount to identifying all proofs of a same sequent, a total collapse of the calculus. 

?4. Plethoric embedding. 
4.1. Linear logic: djs' boa deconstructor. The key to the use of linear logic as a 

tool for the study of derivations in classical logic is the following simple property of 
forgetfulness: if, given some derivation 7n in LL, we replace all linear connectives by 
their classical analogues, i.e., -o, -, , &, 0, e respectively become +, a4, Am, Aa, 
Vm, Va, erase all the exponentials and possible resulting repetitions of sequents, then 
what we get is a derivation in LK. We will speak of the (classical) skeleton sk(7n) 
of 7r. 

More so, there is a converse to this property: 

THEOREM 5 (decoration theorem). Each LK-derivation is the classical skeleton of 
an LL-derivation. 

An LL-derivation is said to be a decoration of its classical skeleton. Decorations 
are far from unique, and in fact, given an LK-derivation, the collection of its 
decorations is infinite. 

In order to prove that the tq-normalization defined in the previous section is 
noetherian and confluent, we will exhibit a decoration of LK q such that the tq- 
normalization of a proof can be simulated by the normalization of (the proof net 
associated to) its decoration. 
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LL seems here relegated to the ancillary task of proving these properties of our 
tq-protocol. But of course things went the other way round: we were looking for 
decorations of LK, because, by the property of forgetfulness, the 'pull-back'7 of LL- 
normalization through any decoration would be a normalization scheme for LK. 
This was how we found the tq-protocol. 

This indicates also the limits of the method: for instance, relaxed tq-reduction, 
where colours of the cut formula are randomly chosen at each structural step, 
probably is terminating (because it seems to be the sequent calculus counterpart of 
Barbanera and Berardi's symmetric reduction in A-calculus, proven to be terminat- 
ing in [1]) but the decoration method cannot be applied directly; also, reduction 
based on Gentzen's cross-cuts seems to be out of reach, due to the 'heavy asymme- 
try' imposed by the LL-way of treating non-linear cuts (cf. [15] for an overview of 
ways of reducing classical proofs). 

So let's look for decorations of LK! 
To get a normalization scheme that is definable in a reasonable way, it seems good 

politics to restrict our attention to decorations that can be obtained in a uniform 
way, namely by applying inductively a modal translation (.)* to LK-derivations: 
we replace each classical formula A by a linear formula A*, obtained from A 
by replacing classical connectives by their linear analogues, and prefixing each 
subformula of A by a modality; a sequent GI, ..., G, ==- DI, ..., Dn becomes 
jiGt, . . n., ,u"G ==> v1Dl, .. ., vmD (we call the uii, v;, the modal prefixes, or 
context modalities). Inductively means, at the level of formulas, that the translation 
of A is defined uniformly in terms of the translation of A's subformulas and does not 
depend on the context in which A occurs; at the level of proofs, that it is determined 
by no other than merely local information, namely the instance of the LK-rule to 
be translated into a correct instance of the corresponding LL-rule: the translation 
of proofs should be 'history-free'. 

The purpose of the game is to obtain in the end an LL-derivation whose classical 
skeleton is the LK-derivation that we started from. Therefore, the only degree of 
freedom we have in translating a given instance of an LK-rule is the application 
of some number of exponential dereliction- and promotion-rules before and/or 
after the instance of the corresponding LL-rule: we will speak of pre- and post- 
modalizations. 

The structural rules in LK oblige us to guarantee that all formulas occurring are 
of type '?' (i.e., begin with a '!' if on the lhs, or a '?' if on the rhs); the cut rule, 
that the modal prefixes 1R (for formulas at the rhs) and 1L (for formulas at the 
lhs), inductively given for the occurrences of the cutformula in the premises, can be 
unified, i.e., either UR is a suffix of YL or 1L is a suffix of HR. A pair of modalities 
satisfying these conditions is said to be adequate. 

There are two minimal ways to inductively decorate an occurrence of a cut in an 
LK-derivation, one corresponding to the adequate pair t - , - !?, the other 
to its dual 1R - 9 L AL =!. These two decorations correspond to the two possible 
choices in the 'structural dilemma'. In either case, in the corresponding proofnet 

7Suppose 7r is an LK-proof and d(7) is a decoration of 7t. Then each sequence of reducts of d(7r) 
defines a possible sequence of reducts of 7r by the property of forgetfulness. Thus, each decoration 
defines a (finite) subset of the possible reductions of its skeleton (whatever a reduction in LK may be). 
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L - - - - =- n A A 

q 
F 

IA** L~~ ~ - - - - - - 

=I?A* !?A*=? 

t 

* ~ ~~~~~~~~~~ * 
* ~ ~ ~ ~~~~~~~~~ * 

quantficaionwhic, FIGUREl 2.e blwwecut deoraition. ls fgeeaiy 

totEFIaTtracte dpethrivrasation)in. Noethtte decortio alsopin showsta colourclssi 

cal formulas to linear formulas: D (Xt) = D (Xq) = X for atoms, and 
D(AR -_ B) u= ,uD(A) -o ,uR'D (B) D(AR A_ B ) = uRD (A) -- ,u-'D (B), 

except when (,')=(q, t) (i.e., when the logical dilemma occurs) in which case: 

q _ f q1D(A) -o ?,utD(B) 

=>A ~~D( __ Bt 

depending on the orientation. 

D (VX AR) = VXu D (A) D(-,AR) = (,u`D(A))I 

where x yE is the longest ofis and b (i. e., 2) = !? andd 
Explicitly, D is defined by: 

Al at r q = A a r t a 
t ?A -o!'?B ?A -o ?!B AB tq 

q ?!A______________A______A_____ q !?!A -o!?B ?!.A-o_ ?!.B jq ?!A- .-!B ?!A- --?!B 
VXA K'TV7 

t VX!nA 7h (!?A)o'. 
q VX?!A q (?!A J- 
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Consider the two translations in the (q, t) case of 2A: the first one, ?!A -o?!?B, 
corresponds to the orientation "A-cut under the B-cut" during the implication 
logical step; the second one, !?!A -o !?B, to the opposite orientation. If one 
decides to use oriented connectives, the two translations correspond to these two 
connectives. Observe, though, that the two translations can be 'unified' as !?!A -o 

?!?B. Thisproves that the orientation need not be preserved by identity classes; hence 
that it is sufficient to distinguish two versions of the unary rules for the multiplicative 
connectives, which will correspond to the two ways in which an instance of such a 
rule can be decorated: 

!A ?B, . .. . .. ! A ?B, .. . 

. . ,?!A ?B, ....... ... !Ah !?B, .. 

!?!A ?B, ... or ... !A ?!?B, ... 

.. M ?A !?B, ....... ... I ?!A ?!?B, .. 

'.?.. A ?!?B,. !? !A ?!?B, .. 

So one sees how the dilemmas described in Section 3 become obligations to 
choose when inductively decorating an LK-derivation: the 'structural dilemma' is 
equivalent to either t- or q-decorating the (identity class of the) corresponding 
cutformulas, the 'logical dilemma' amounts to a non-determinism in the translation 
of formulas that might get involved in a 'problematic' cut, and choosing one or the 
other corresponds to choosing an orientation of the original rule, or connective, if 
one prefers. 

Also, note that, given a linear formula of the form D (F), one unambiguously 
deduces the colouring of F's subformulas; indeed, a subformula G of F is t if and 
only if in D (F) it is immediately prefixed by a '?', it is q if and only if it is immediately 
prefixed by '!'. 

THEOREM 7 (plethoric embedding). There is an inductive decoration that maps 
proofs of LKtq to proofs of LL. A proof r of Ft, Aq =#= At, Iq is mapped to a 
proof D (r) of !?D (F), ! D (A) =, ?D (A), ?!D (E) the skeleton of which is equal to 7r. 

PROOF. Cut, identity axiom and structural rules are unproblematic, by adequacy 
of the chosen context modalities. As to the logical rules, we don't want a case-by- 
case inspection, so let's put it abstractly. First consider the multiplicative case which 
is the hardest. 

We want to prefix the active formulas in the premises of the unary and binary 
multiplicative rule of a given connective so that we get the same final modality for the 
formula on both sides. In other words, we have to address the following 'unification'- 
problem: find modalities (WA, WB, OA, OB) such that: (1) A/US = OA/u and 

EB/) = OBI<; (2) the following are derivable: 

,uAs s8, Bs, H ~ sB 

RA/utAs, ? BAS /1 Bs, OA UE As OGB/4B 

Solutions to (1) always exist because of the suffix property we asked for both 
adequate pairs (a property which is btw obviously necessary); rules in (2) are 
correct if and only if at most one of (WA, WB) is of type ! (because the context is 
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of type ?). In case s = L, s' = R (in other words, in case the connective under 
consideration is A_) the shortest prefixes satisfying (1) and (2) are given by the 
following table: 

([ |(AI ! (B) t , 

|q | (t?,?!) (,- | 

where . means the void modality. In the critical (q, t) case there are two minimal 
solutions; see below. 

In the additive case the condition (2) is always fulfilled for there is only one 
formula active in the unary rule, so the shortest prefixes' table is just the trivial 
unification of adequate pairs: 

(DA, IB) t q 

q ( ? !) (?,.) 

These two tables define exactly the pletho-translation of both styles of implication. 
The cases of quantifiers and negation are obvious. -H 

In fact, one sees that the translation is entirely determined by asking for an 
inductive decoration of LKtq-derivations (i) which uses as little exponentials as 
possible and (ii) in which 8-coloured formulas are prefixed by #6. We speak of a 
plethoric translation, because nevertheless the number of exponentials occurring is 
considerable. 

In order to treat the complete propositional fragment, one can use the following 
"duality-correspondence" between pletho translations of the connectives: 

8C #A vB E A{ vB 8C IiA{ v1B 

The dual I' of a modality ,i is obtained by replacing all ! by ?, all ? by !; e.g., to 
find the inductive clause for Aq Vm Bt, it suffices to take the modalities in the clause 
for At -T, Bt (being !?, !?), and dualize the first of these, thus finding ?!A P !?B. 
Similarly, it suffices to consider only one of the quantifiers. 

In order to obtain a converse to Theorem 7, we have to ask whether, given an 
LL-derivation ir of a sequent !?D(F), !D(A) =S, ?D(A), ?!D(Y), it is possible to 
assign colours to all formulas occurring in sk(7r) in such a way that the resulting 
derivation is an LKtq-derivation of Ft, Aq =#, At, 1q. Note that in general this will 
be false: !A ==# ?A is clearly LL-derivable, but Aq =#, At is not LKtq-provable, 
for atomic A. However, this is the only problematic case, which is easily fixed by 
restricting the use of identity axioms to modalized formulas. We then can prove the 
following, the detailed verification of which is left to the reader. 

PROPOSITION 8. A sequent Ft, A" =#, At, Eq is derivable in LKtq if and only if 
!?D (F), !D (A) ==*D (A), ?!D (E) is derivable in LL with identity axioms restricted 
to modalizedformulas only. 
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4.3. Strong normalization. Let 7r be a proof in LKtq and D (7r) denote its pletho- 
decoration as in Theorem 7. Let c be a cut in 7r with cutformula At, say. Then its 
decoration is as in: 

S?D(A) 
!?D (A) !?D (A) 

Suppose now S2 applies to c in or, then the attractive cutformula is main in a 
logical rule, hence in this case the decoration of c is: 

D (A) 
?D (A) SD (A) 
!?D (A) !?D (A) 

Therefore one can perform a dereliction reduction-step in LL to get the "adjusted" 
decoration: 

* ~ ~~ D(A) 
D S(A) S D (A) 

Next, suppose L applies to c. Then both cutformulas are main in a logical rule, and 
therefore the decoration of c is as follows: 

D(A) D_(A) 

SD (A) SD (A) 
!?D (A) !?D (A) 

Now one can perform two consecutive dereliction reduction-steps in LL to get the 
adjusted decoration: 

D(A) D(A) 

Let the adjusted pletho-decoration of 7r, denoted by D (7r) be the taLL proof net 
associated to the sequent calculus LL-proof where decoration of cuts has been 
adjusted as above, i.e., appropriate dereliction reduction-steps have been performed 
for each cut to which S2 or L applies. The effect of that adjustment is that the 
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cutformula in the adjusted decoration has two (respectively one, zero) 'surface' 
exponentials exactly in case SI (respectively S2, L) applies. 

THEOREM 9 (simulation theorem). The adjustedpletho-decoration mapping proofs 
of LKtq to proof nets is a homomorphism with respect to normalization. That is, for 
any proof it of LKt1 and any reduction of 7r to 7r', there exists a reduction from D- (7r) 
to D- (ir'). This reduction is non void except possibly in the case of a cut on -A if an 
L-step applies. 

PROOF. The proof is only a matter of simulating each type of reduction-step, 
which is verified by careful computation. 

As to the nature of that image reduction: note again that either the energy of (the 
descendants of) a given cut decreases when it is reduced, and since the decoration is 
adjusted, also the number of exponentials of (the descendants of) cutformulas in the 
decoration decreases, or the main connective disappears (in case the reduction-step 
is L). In both cases there is a change in the corresponding proof net except in the 
case mentioned above exactly when the descendant of the cut on -1A has maximal 
energy. 

The following then is a consequence of our taLL normalization theorem in Sec- 
tion 2 and the simulation theorem above, considering that invisible steps obviously 
cannot accumulate forever. 

THEOREM 10 (strong normalization). The tq-protocol of 3.2 is strongly normaliz- 
ing. 

Via our decorations we can use Girard's coherent semantics for linear logic ([9]) 
as a denotational semantics for LKt1. 

PROPOSITION 1 1 (pletho or D-semantics). Let 7r be a proof of LKtq, and let D (7r) * 
be the denotation of D (zr) in linear logic's coherent semantics. This interpretation is 
non-trivial and invariant under tq-normalization (in other words, *oD is a denotational 
semantics for LKtq). 

PROOF. First note that since the proof net associated to D (7r) reduces to D - (7r) 
they have the same semantics. Now by the simulation theorem, it is sufficient 
to show that the coherent semantics of a taLL proof net is invariant under any 
elementary reduction step. As taLL reduction steps differ from the usual ones only 
in the commutative reduction step for tamed additives, we need only check that this 
precise step leaves the semantics unchanged. And this evidently is the case. A 

4.4. Church-Rosser express. Normal forms of a given proof are mapped by the 
pletho embedding to the same proof net, but a same proof net may have several 
sequentializations. So this is not enough to get unicity of normal forms. The trick 
is to overload the modalization used in the pletho embedding to the effect that the 
resulting proof nets are 'rigid', i.e., have a(n almost) unique sejuentialization. 

So define another embedding using 'fatter' adequate pairs U L=!?!, R= " %9? and 
-L = !?, HR = ?!?. That it defines a decoration comes from the fact that y4 =t 

and 1q - p4?, hence the unification problem now to solve will only be a trivial 
'shifting' of the preceding one and will admit the shifted solutions of the pletho 
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one as particular solutions. The simulation theorem will still hold for just the same 
reason (or because the added exponentials are superfluous as proved in [40]). Now 
observe that each main formula in a logical rule will thus get a promotion in the 
post-modalization phase. From the confluence of proof nets with tamed additives 
then follows: 

THEOREM 12 (confluence). Two tq-normalforms of an LKtq-proof are equal up to 
permutations of structural rules. 

A direct proof of local confluence would do as well, but would be tedious to 
provide. 

4.5. Weak equivalence. Now that we have installed a noetherian and confluent 
normalization, let us define a quotient of the syntax that is compatible with that 
normalization and which will greatly optimize our syntactic grill-time ([14]). 

Two proofs are said to be weakly equivalent if they differ only up to contracted 
weakenings, re-arrangement of multiple contractions on the same formula (associa- 
tivity, commutativity) and permutations of structural rules as, e.g., for a contraction 
and a binary multiplicative rule: 

AS,AS'... ... AS, AS... 

A.,... ... .AS, AS... 

, A S, . .. . ... 

and for a contraction and a binary additive rule: 

I ,,AS, AS... ... I ,ASA, AS... . W ... ,ASAS, ... . . ,AS,AS'.. 

. s... . ... .... .... .... 'A ' '.... 

... S,... ..., AS,... 

We will write R S to indicate that the taLL proof nets R and S differ only up 
to box/contraction or box/weakening permutations, contracted weakenings, and 
re-arrangement of contractions (associativity or commutativity). 

By the exponential development of an exponential cut we mean the reduction of 
the cut and its residues, in one go, up to the leaves of the tree of the cutformula's 
ancestors, where one then performs the appropriate steps: axiom, box/dereliction 
steps or erasing. 

If R S and R reduces to R' by such an exponential development then the 
same step applies to S, yielding a reduct S' that is --equivalent to R' (note that 
additive box/structural permutations involve contracted weakenings). This is of 
course also the case for logical and axiom steps. Hence, because one can always 
reach the normal form with exponential developments as only exponential steps: 

n 
LEMMA 13. If R and S are --equivalent then so are their normalforms. 
In fact the syntax of proof nets may be reworked so that members of a same 

-class are identified syntactically; this "new syntax" was considered in [39, 7]. 

PROPOSITION 14 (weak equivalence is tq-stable). If two LKtq-proofs are weakly 
equivalent, then so are their normalforms. 
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PROOF. Take once more the rigid embedding used in the previous subsection. Let 
us call it R (like rigid). Observe that r 7 i' if and only if RG'r) R(7r') (the "only 
if" part is true inasmuch as decorations are concerned, only the "if" part needs 
rigidity). 

So if 7r 
w 

7r', then R(i) R(7r'), hence nf(R(ir)) nf(R(7t')). Then, by the 
(adaptation to the rigid case of the) simulation theorem R(7r) and R(7r') reduce to 
the proof nets R(nf(7r)) and R(nf(7t')). Those being cut-free, by unicity of normal 
forms for proof nets, are nothing but nf(R(7r)) and nf(R(7r')) which are by the 
lemma above --equivalent. Therefore R(nf(7)) R(nf(7t')). Whence finally, by 
the first observation, nf(7r) nf(7t'). H 

This last proposition has many an enjoyable consequence. It implies e.g., that tq- 
normalization will 'work' for a calculus with implicit formulation of the structural 
rules. 

Also, when eliminating a cut in the following situation 

71/ 

*AA A A, F' A' 
F==A,A A,F'== A' 

F, F' ==* A, A/ 

in order to make it commute with the contraction, one has to duplicate 7r and 
contract all formulas in F and A. But in which order? The proposition above shows 
that this order is irrelevant. The same remark applies in case we commute a cut 
with a weakening on the cutformula, and replace it by a number of weakenings 
on context-formulas. In fact those boo-boo's don't even find their reflection in the 
pletho decorations. 

Last, no finer Church-Rosser property than the one up to permutation of struc- 
tural is interesting since those permutations are included in w-equivalence. 

This 'weak equivalence' is strictly weaker than the equivalence induced by the 
coherent semantics (whence its name): 

PROPOSITION 15. If two LKtq-proofs are weakly equivalent, then their D-semantics 
are equal. (The converse does not hold.) 

PRoOF Note that, when 7r 7r', then clearly D') D (r'). On the other 
hand, for any two proof nets, R1 R2 implies that their coherent semantics are 
equal. The converse is not true, as pletho-decorations of proofs that differ in the 
order of two consecutive logical rules might have the same associated proof net. 
Take for example two proofs that differ only in the order of two consecutive right 
multiplicative t-implication introductions, the active formulas of which are coloured 
in the 'anti-critical' way (i.e., At == Bq). H 

Hereafter, whenever convenient, we will consider LKtq-proofs up to weak equiv- 
alence. 



774 VINCENT DANOS, JEAN-BAPTISTE JOINET, AND HAROLD SCHELLINX 

?5. Stringent embedding. 
5.1. So far. So far we have made an inventory of the precise points at which cut 

elimination in an LK-proof ir is ambiguous (i.e., forces the eliminator to choose), 
and saw that each of the resulting 'dilemmas' corresponds on the nose to a different 
faithful interpretation of ir as a proof in linear logic. By adding beforehand the 
information that possibly might be needed in the course of the normalization we 
defined a completely unambiguous procedure of cut elimination: when applying the 
tq-protocol to an LKtq-derivation, for each occurrence of a redex there is one and 
only one reduction-step that applies. Note also that each LKtq-proof is mapped to 
its computational twin in LL by the pletho embedding. 

However, we did quite drastically change the notion of formula: the colours and 
orientations we added do not correspond to anything related to the classical truth of 
a given formula. As is the distinction of two versions of each unary multiplicative 
rule, these are purely formal, proof theoretical artifacts, enabling us to get a grip 
on the normalization of classical proofs. Note that we might opt for uniform 
colouring (all t, or all q), and for a uniform treatment of the problematic logical 
cuts (always 'A-cut above B-cut', or always 'B-cut above A-cut'), in which case 
colouring and orientation become obsolete, and we simply have different procedures 
for normalizing LK-derivations, each of which is strongly normalizing! 

In fact, also the distinction 'additive/multiplicative' might be considered a proof 
theoretical artifact, and as such it is clearly related to the 'orientation'-information. 
Indeed, for additive versions of the binary connectives there is no logical dilemma: 
an additive connective has a natural orientation when engaged in a cut, as only one 
of its immediate subformulas will be present! Or, alternatively, one can consider the 
distinction of two versions of the unary multiplicative rules as adding an additive 
flavour to the multiplicative connective, which in its additive guise naturally demands 
two unary rules. 

When using additive connectives, one imposes a restriction on the form of LK- 
derivations, which implicitly solves the logical dilemma. Contrariwise, there doesn't 
seem to exist a restriction on the form of LK-derivations that implicitly solves the 
structural dilemma. Brute force restrictions like 'at most one formula at the lhs' 
result in systems that are not complete for classical provability. Yes, the need to add 
information in order to control the structural phase of normalization appears the 
minimum price due for classical logic's deep symmetries: colouring is present in LL 
in the distinction between '!' and '?'. Another way to say this (cf [10]) is that proof 
theory recently uncovered a hitherto hidden intrinsic property of classical formulas: 
they all come in pairs At, Aq. In proofs AE can interact with A' only: a classical 
formula A has to reveal itself as being either q or t during normalization. On the 
level of provability, however, there is no distinction: Aq is provable if and only if 
At is. 

Hence we'll have to stick to LKtq, at least colour-wise. 
But what about the distinction of two types of multiplicative unary rules, or the 

orientation of multiplicative connectives? As we saw above, there are many possible 
ways out, and, until proven otherwise, every one of them may claim to be the 
solution. So it should no longer come as a surprise to the reader that at this point 
there appear that many candidates for a computationally sound classical logic. 



A NEW DECONSTRUCTIVE LOGIC: LINEAR LOGIC 775 

5.2. So what? Apart from uniform orientation, taking all connectives additive, 
or taking additive connectives only in the critical cases, there is a more fertile way 
to avoid the 'logical dilemma'. It starts from the observation made in Lemma 4: 
whenever at least one of the two formulas in the problematic two-premise rule is main, 
there is no logical dilemma. We are going to show that it is possible to restrict 
LKtq-derivations in such a way that this condition always is fulfilled, and moreover 
that nothing is lost. 

As in setting up the tq-protocol, we were guided by the existence of an embedding 
into linear logic, an embedding that realizes the above restrictions. We call the 
system obtained by 'pull-back' LKq. Again the following presentation will violate 
the historical order. After some necessary technical preliminaries, we will define 
LK" inside LKtq (Section 5.5). The construction 'by pullback' via the corresponding 
embedding into LL is described in Section 5.6. 

The restriction defining LK", when made to bear upon proofs of Lt (the intu- 
itionistic t-sequent calculus, i.e., at most one formula at the rhs and all formulas 
coloured t), results in a system that is very close to natural deduction, a system that 
was referred to as ILU in, e.g., [5, 4], or UT in [15]. It is not a bad intuition to 
think of LKq as a classical natural deduction. 

5.3. Stability. In the following we will investigate the effect of tq-reductions on 
main-active interspaces (cf. Section 2.1) having a specific, simple, structure, namely 
having the form BA = co, c,, . ., C" ~n- 1, Un, where all vi #& co are structural rules on 
formulas other than Ai, and xn's successor a is either a logical rule or a cut: 

m/w 
F r, A's 

S 

S 
an: r, As 

a 

We will refer to blocks of this kind as lucid m-a-interspaces. 
If n = 0 and moreover A is main, we say that the (lucid) block isflat; if all vi co 

are weakenings, we will call the block w-lucid. 
Let 7i' denote a one-step tq-reduct of oz. Note that, trivially, any occurrence of a 

logical rule r in it' in which some occurrence of a formula, say A, is active, stems 
from a unique occurrence r* of (the same) logical rule in it in which an occurrence A* 
of (the same up to substitution) formula is active (we call r*, respectively A*, the 
lift of the occurrence r, respectively A). Conversely, we define the set of residues of 
a given occurrence s of a logical rule in it as the set of all occurrences r of logical 
rules in it' such that r* = s. 

Similarly, any occurrence of a cut c in it' with cutformula A stems from a unique 
occurrence c* in it with cutformula A*, except for those occurrences of cut that are 
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created in an L-step (they have no lift in ir; the reduced logical cut does not have a 
residue in 7r'). 

As a consequence, given an m-a-interspace BA = co, a, n in or, such that 
c,'s successor a is a logical or a cut rule, we can define the set of residues of BA 
in ir' as the set of all m-a-interspaces in ir' associated with the corresponding active 
formulas in all residues of a in ir'. 

LEMMA 16 (stability lemma). Let 7r be an LKtq-proof, r' be a one-step tq-reduct 
of Xr, and let BA be an m-a-interspace of an attractive formula-occurrence A in 7t. If 
BA is lucid (respectively w-lucid,flat) then all residues of BA in A' are lucid (respectively 
w-lucid, flat). 

PROOF. Consider such a lucid m-a-interspace BA, (cf. the representation in Fig- 
ure 3, where the circles indicate formula occurrences, and the vertical and diagonal 
lines trace corresponding formula occurrences in the block). Intuitively the lemma 
says, that a tq-reduction step will not change the general shape of such a block, the 
reason being that, in case A, is not the cutformula, cuts will just pass through it 
in all cases, except when (i) an ancestor of the cutformula is one of the weakened 
formulas in the block or (ii) rule bo is an axiom, and As is an ancestor of the 
cutformula. However, in case (i) the weakening is merely replaced by 0 or more 
other weakenings. In case (ii) we will be safe, thanks to As's attractivity. Follows 
the detailed argument. 

First, suppose the reduction step is an L-step. If A is the (attractive) cutformula, 
then BA has no residue in it'. Hence our claim vacuously holds. Otherwise, note that, 
by lucidity, neither of the cutformulas occurs in BA, hence the block is untouched 
by the reduction (the worst that can happen is a substitution in case of a quantifier 
reduction step). 

Next, suppose the reduction step is an S-step. If the bottom-occurrence of A is 
the (attractive) cutformula, let us first suppose that the step is of type SI. Then, 
if the top-occurrence of A is newly born in an axiom or a weakening, BA has no 
residue in it'; if it is main in a logical rule, then BA's residue is flat. If the step is 
of type S2 then BA is flat (because the attractive cutformula is main in a logical 
rule), and so are all its residues. (Note that there are no residues corresponding 
to introductions of ancestors of the non-attractive occurrence of A by axiom or 
weakening.) 

If A is not the cutformula, then, in case BA is part of (whence, by lucidity, is 
properly included in) the transported subderivation, the residues of BA in 7t' are 
m > 0 copies of the original block. Hence if BA is flat or w-lucid, so are all of its 
residues. 

Let us therefore suppose that BA is part of (again: hence properly included in) 
the transporting subderivation. We then distinguish two cases: 

* The block does not contain an ancestor of the cutformula. Then it will re-appear 
unchanged in 7t'. 

* The block does contain an ancestor of the cutformula. We again distinguish 
two cases: 

- None of the leaves of the tree of the cutformula's ancestors is part of the block: 
it then will re-appear in it', modulo 'a change of context'; possible contractions on 
ancestors of the cutformula are replaced by 0 or more 'contextual' contractions. 
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m/w 

<C 

- - ~~~~~~~a 

(3) (1) (2) (2) 

FIGURE 3. A lucid m-a-interspace BA. 

Hence the block's residue is lucid (it might even be flat); and if the original block is 
flat or w-lucid, then so is the residue. (Cf. the traces indicated by '(1)' in Figure 3.) 

-The block does contain a leaf of the tree of the cutformula's ancestors. 
* If the leaf occurring in the block is a weakening, this weakening is necessarily 

one of the ci for 0 < i < n (hence BA is not flat). After reduction, in BA's residue, 
ai will be replaced by 0 or more 'contextual' weakenings. So the residue will be 
lucid. If BA is w-lucid, then so is its residue (it might even be flat). (Cf. the traces 
indicated by '(2)' in Figure 3.) 

* If the leaf occurring in the block is an identity axiom, then it is go, and because 
A is attractive, the reduction step under consideration is of type S2. So we are in the 
situation of Figure 4 (or its 'q'-dual), where rA indicates a logical rule introducing A. 

After reduction the residue of BA remains lucid (respectively w-lucid, flat), due 
to the logical rule rA. (Cf. the trace indicated by '(3)' in Figure 3.) 

This exhausts all possibilities, and finishes the proof. - 

The reader should convince herself that the hypothesis 'attractive' is essential 
in the lemma above: the stronger claim, obtained by dropping the condition of 
attractivity, is false! There are, however, several possible variations on the theme 
of the stability lemma, that are of interest in other than the present applications. 
To mention only one: if one considers m-a-interspaces in which m is asked to be a 
logical rule, it follows (by a simple inspection of the above proof) that the condition 
of attractivity can be dropped. 
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A A 
900 

a 

rA 

=A A= 

FIGURE 4. The leaf in the block is an axiom. 

Observe that, if one of the mr-a -interspaces BA corresponding to an active formula 
occurrence A is lucid, then it is, obviously, unique, i.e., it is the only m-a-interspace 
associated with the given occurrence of A. Hence, by Lemma 16, if the m-a- 
interspace BA. corresponding to the lift A* of a formula A, active in a logical rule r 
in the tq-reduct ia' of a proof i, is lucid, then in i' there is a unique m-a-interspace 
BA corresponding to A, which is also lucid. 

We will make use of this observation when showing that several constraints on 
LKtq-derivations are preserved by tq-normalization, hence define computational 
fragments of LKtq. The most important of these is the constraint corresponding 
to LK7, defined in Section 5.5. 

A remark in passing: since lucidity is preserved, one could define the energy of 
a cut to be less than one when the attractive cutformula has a lucid m-a-interspace, 
and redefine accordingly the notion of an SI, S2 and L-step. Intuitively this just 
says in another way that structural rules are 'delocalized', as tq-stability of weak 
equivalence shows. 

This would allow for an instructive alternative way to prove the above lemma: 
we reduce it to the case that all m-a-interspaces are w-lucid, by using the fact that 
weak equivalence of derivations is tq-stable. For this it suffices to observe that 

given a lucid m-a-interspace in an LKtq-derivation t there is a i' 7i in which the 
corresponding m-a-interspace is w-lucid. This is because it is always possible to 
push contraction rules below a logical rule or a cut (note that in the case of a binary 
additive rule this may force the introduction of a weakening). 

In order to conclude one needs a sharpened version of tq-stability of A, namely 
that whenever ic' 7 and it reduces in one step to 7tl then there is a one step 
reduction (for the modified notion of reduction) of i' to some 7t i. 

5.4. Plug in q's! Identity sequents A =#> A are derivable by canonical derivations 
which we will call q-proofs: because the q-proof associated to T is the sequent 
calculus counterpart of AyA XA-By, the q-expansion of x. Formally, they are 
defined as follows. 
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DEFINITION 17 (q-proofs). If Ai is(are) the immediate subformula(s) of A, an q- 
proof of A ===- A (notation: qA), consists in the axiom(s) Ai ===, Ai and precisely 
one instance of each of the logical rules introducing A's main connective. 

Here are some examples: 

A- -A B= ?B A ==A A- -_A 
AmT B. A -= B A, A- -,A, A 

A A B ==A=- --A -A --A 
Note that in case A's main connective is a negation there exist precisely two distinct 

q-proofs (we will, for obvious reasons, speak of the 'intuitionistic', respectively the 
'classical', QUA ) 

As we will come to see, these tiny proofs are of importance. 
First of all, they pop up when considering the notion of reversibility (of rules, 

formulas), well known from standard proof theory. 

DEFINITION 18 (reversibility). (Ri) A rule is said to be reversible if and only if 
from its conclusion one can derive its premise(s). 

(R2) A (non-atomic) formula A, is called reversible if and only if, whenever a 
sequent F, A, is derivable, we can ask for A, to be main, without loss of prov- 
ability (i.e., there exists a derivation of F, A, whose last rule introduces As's main 
connective). 

In LK these notions coincide: a formula A, is reversible if and only if its intro- 
duction rule on the s-hand side is reversible, and the reversible rules are exactly the 
unary multiplicative and binary additive rules, both negation rules, left existential 
and right universal quantifier rules. 

In LKtq all of this continues to hold: 

PROPOSITION 19 (reversible rules). Binary additive rules, unary multiplicative rules, 
left existential and right universal quantifier rules, as well as both rules for negation, 
are reversible. The other ones are not. 

PROOF. One just plugs (or cuts with) a piece of an q-proof associated to the 
connective. In the multiplicative case: 

A==- -A B =MB 
A T A -'A B, A = B 

A ==- B 

and in the additive case: 

A ==- A B ==- B 
-aA, A -a+B A -"+B ' B - I A -4B A B 

- -A B 

The cases of negation and of the universal quantifier are left to the reader. 
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For the negative claim: it is easily verified that in general a cut free proof of an 
identity A ==- A, that does not end with an application of a structural rule, does 
necessarily end with an application of a reversible rule (unless it is an axiom). -d 

5.5. The constraint. 

DEFINITION 20 (LK17). A proof of LKtq is an LK7-proof if and only if every at- 
tractive (occurrence of a) formula active in an irreversible or a negation rule is 
main. 

This constraint can be rephrased as follows: the m-a-interspace associated to 
an attractive formula occurrence active in an irreversible or a negation rule is flat. 
Thus, the stability lemma of the previous section implies almost directly that LK7 
indeed is a computational fragment of LKtq* 

THEOREM 21. LK7 is stable under tq-normalization. 

PROOF. Let E C LK7, and suppose n tq-reduces to nr'. Suppose A is an attractive 
formula occurrence active in an irreversible or negation rule r in 7a', and r is a residue 
of an occurrence r* of the same rule in i. The corresponding active occurrence A* 
in r* is attractive, hence (by hypothesis), the (unique) m-a-interspace associated 
with A* is a flat block BA. in Ut. By Lemma 16 all residues of BA. are flat, in 
particular the block BA corresponding to our chosen formula occurrence A in 7t'. 
Hence A is main. -] 

As expected, we no longer need an orientation of multiplicative connectives, nor 
two versions of the unary multiplicative rules, for the output of the (q, t) L-step for 
the implication will be: 

-RA - - RB 

A A B B=- 

where A on the rhs and B on the lhs are main, so that the order of the cuts is 
irrelevant with respect to tq-normalization (Lemma 4). 

Moreover, with respect to provability, nothing is lost. 

THEOREM 22 (completeness). All sequents provable in LKtq are provable in LK7. 

PROOF. This is because unconstrained rules are derivable with the help of cuts 
with pieces of q-proofs in LK7 (whence its name). We only deal with implications 
and, as usual, do not represent the contexts. "Would-be active" formulas below are 
denoted by A. 

In the multiplicative case: 

A =-A B=> B 
-A A,A B B =B 

A mB -- 



A NEW DECONSTRUCTIVE LOGIC: LINEAR LOGIC 781 

In the additive case: 

A =#- A * B =>kB 
A -+B, A A - => B = A aB 

a a 

A B A B 

For the universal quantifier: 

Ay = BAy 
Vx Ax =BAy Ay 

Vx Ax = 

In case of negation: 

: A A A =>A : 
A A,-,A =?-A,A AA 

--A -=> =>A . 

All these transformations (made explicit only if one eliminates the cuts intro- 
duced) are identities if the would-be active formula is (1) not attractive or (2) already 
main, i.e., in the case where it needs no correction. 

In fact we have better than a completeness theorem: the proof above shows how to 
project LKtq onto LK7 by eliminating cuts. By the preceding remark this projection 
leaves LK7 pointwise invariant up to trivial structural steps. 

Observe that in the multiplicative case the order of the cuts matters when both 
would-be active formulas are attractive. So there are two possible ways to project a 
dilemmatic multiplicative rule in LK7. 

In the additive case the derivation of the unconstrained rule is not intuitionistic, 
so that only the constraint on LJq would be complete for U-provability with 
respect to the additive implication. Anyway LJ with an additive implication is itself 
not complete for intuitionistic truth; that is why there is no additive intuitionistic 
implication. 

In LJ there are 0(21) cut-free ways to prove X, [X X]' X (where 
[X -~ X]'n stands for n occurrences of X m X), without using structural rules; 
there is, however, only one way to do this in the constrained system LJ7, a sobriety 
alien to usual sequent calculi (as to old American cars). Sobriety shows up again in 
the fact that only one of the two q-proofs of --(Al) ==* -i(Al) associated to negation 
is correct with respect to the constraint: the 'intuitionistic' one if 8 is q, the 'classical' 
one in case of t. Hence in LKV all q-proofs are unique. This has an interesting 
consequence for the notion of reversibility in LK7: Proposition 19 continues to 
hold for LK7, but we have to replace reversible by R1-reversible (in the sense of 
Definition 18). In the case of negation, due to the fact that attractive negated 
formulas in LK7 are asked to be main, the notions of RI - and R2-reversibility no 
longer coincide: negation in LK7 is always R I-reversible, but ( ,AE), is R2-reversible 
if and only if Al is non-attractive (one cannot have both the moon and the money 
for the moon). 
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5.6. LK7 and linear logic. The constraint characterizing LK7-derivations, is stron- 
ger than strictly necessary in order to recover commutation of cuts in the 'logical 
dilemma'. As we know by Lemma 4, to that effect it would suffice to ask that at 
least one of the attractive (occurrences of) formulas active in an irreversible multi- 
plicative rule is main. Again by Lemma 16, this constraint defines a computational 
fragment (say (LK7)') of LK , which, as LK7, is complete for LKtq-provability. 
Contrary to LKV, however, the stringent embedding which we are going to define 
is not a decoration for this fragment,8 and it is this embedding, giving a very tight 
fit between LK7 and LL, which in the end justifies our choosing the more restricted 
system. 

DEFINITION 23 (stringo translation). Take e, c' in {t, q}, we define a mapping S 
of coloured classical formulas to linear formulas: S (XI) = X, and 

s(A8 - B) = , S(A) =-o It"S (B) S(A8 1* BE) = ,uS(A) H-* u 'Sj(B) 

S (VX A8) =vX ,aIS(A) 

S(-A t) = (u tS(A)) S( (Aq) = (uq S(A))I. 

Explicitly, S is defined by: 

A-_ B t q A aB t q 
t ! ?A -- B !?A -o?!B t ?A !?B ?A !B 
q !A -o?B !A -?!B q ?!A !?B ?!A !B 

VXA 1A 
t VX?A t (?A) 
q VX?!A qT (!A)-L 

As in the pletho-case, again it suffices to deal with implications, negation and 
universal quantification, as the treatment of the other connectives and the existential 
quantifier follows by 'duality', cf. the remark on page 769. 

This translation is entirely determined by asking for a decoration of LK" with a 
void pre-modalization for (R2-) reversible formulas. 

THEOREM 24 (stringo embedding). The translation of Definition 23 above allows 
for an inductive decoration mapping proofs of LK7 to proofs of LL. 

PROOF. A proof 7t of a sequent Ft, Aq === At, Iq is mapped to a proof S(7t) 
of !?S(F), !S(A) ==* ?S(A), ?!S(Z), but now we take into account the fact that 
attractive formulas active in an irreversible rule are main. 

Again, as in the proof of Theorem 7, we want to prefix the active formulas in 
the premises of all rules for a given connective in such a way that we get the same 
final modalities for these formulas in all cases. But this time we demand that 
these prefixes in a reversible rule for a binary connective or quantifier be void (as 
already mentioned, for these reversible rules there is no pre-modalization, only a 
post-modalization)! Now in general in LKtq this is problematic in case an active 
formula in the reversible rule is non-attractive: it then, in the inductive decoration 

8And (LK )' has the funny property that its optimal decoration is non-deterministic, while neverthe- 
less its normalization is fully determined. 
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procedure, has obtained a single modal prefix (! or ?), while the corresponding 
formula in an irreversible rule has a double modal prefix (?! or !?). Hence, for this 
to work, we have to remove the outermost exponential. However, being in LK7, we 
know that this formula, active in the irreversible rule, is attractive, hence is main: 
it has just been introduced in an axiom or a logical rule, whence our problem is 
simply solved by not applying a dereliction before application of the irreversible rule 
precisely in those cases. We leave it to the reader to provide the (similar) argument 
for the negation rules. -1 

The fact that LK7 dodges the logical dilemma is here mirrored in the fact that 
(using the notation of the proof of Theorem 7) we can take EA and EB to be void, 
whence the 'unification problem' in case of the unary rules has become trivial and 
there no longer are two symmetric solutions in the (q, t)-case. 

PROPOSITION 25 (stringo or S-semantics). Let 7t be a proof of LKV, and let S (7)* 
be the denotation of S(7t) in linear logic's coherent semantics. This interpretation is 
non-trivial and invariant under tq-normalization (in other words, *o S is a denotational 
semantics for LKV). 

PROOF. The proof will proceed as in the case of the D-semantics provided we 
know that the proof net associated S(7) and adjusted as usual will simulate the tq- 
steps. But that proof net is just D- (7) minus superfluous exponentials and hence 
will reduce exactly as D - (7) up to dereliction and commutative steps. -i 

Let us take a moment to indulge in a brief heuristical and historical flash-back, 
by tracing the path that originally lead us to LK7, a path that stays inside linear logic 
(cf. our [4]). The proof by induction on the length of derivations in intuitionistic 
sequent calculus of the correctness of Girard's original translation of intuitionistic 
logic in LL, where the intuitionistic arrow is read as !A -o B, relies on a proof of 
!(!A-o B) == !A -o !B. 

This translation is an early example of what in this paper we call a stringent 
translation. From the point of view of sequent calculus reading the intuitionistic 
arrow as !A -o !B, an example of a pletho translation, is way simpler. But sparing 
exponentials amounts to building a computational twin to our proof that is more 
flexible than the pletho one, more flexible here meaning: less exponential boxes, 
hence more sequentializations, hence a larger tq-stable notion of equivalence of 
proofs induced by the translation. So, in order to get a 'high fidelity' classical syntax, 
it was very natural and tempting to try the same trick (economizing exponentials) 
also in the case of classical implication. 

Well, let us then prove that the translation of Definition 23 is sound with respect 
to LKtq provability (the indirect proof says that this is a corollary to Theorem 24, 
because of Theorem 22). 

The idea is, to just inductively apply the stringo translation to an (unconstrained) 
LKtq-derivation. This is straightforward for the reversible rules, which are trans- 
lated by the corresponding (reversible) LL-rule followed by the appropriate post- 
modalization. 
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In case of an irreversible rule, we apply the pletho pre-modalization to the active 
formulas, and then apply the corresponding (irreversible) LL-rule. Now the result- 
ing formula (5 (X)), (D on the surface, S below),9 of course will in general not be 
the stringo translation S (X) of the LKtq-formula X. If it is not, in order for it to 
become so, we have to remove one or more exponentials. This we achieve by cutting 
with a sequent (#6 S(X))s, (D (X))s. We refer to such a sequent as a constrictive 
morphism. 

Hence irreversible rules are translated in the following way: 

pletho pre-modalization of the active formulas 
LL associated rule associated c. m. 

Let us list the constrictive morphisms needed for the implications, leaving the 
cases of negation and universal quantification to the reader. 

For the multiplicative style, we need: 

A/B t q 
t ![?]I!?A --?Bl !?*A --!?B 
q ![?]{!A -o?B} ==*!?!A -o?!?B ![?]{!A -o?!B} ==- ?!A -o?!B 

where [-] means that the modality inside is optional (so the morphism succeeds 
whatever the colour of the implication). For the additive style, we need: 

A/B t q 
t +.?. !B -MB9A I9} ! T 9B ?[!],?A B 
q ?!A +?!B =>?[!]{?!A B 

Now all this would be pretty worthless if all, or even some, of these sequents were 
not derivable. However, that is not the case.10 

LEMMA 26. All constrictive morphisms are derivable. 

PROOF. We treat only the case of the binary connectives. Let * denote such a 
connective. If the inductive application of the stringo translation as defined above 
results in a formula D (A * B) containing too many exponentials, this formula is 
introduced in an irreversible rule. In the constrictive morphism then D (A * B) occurs 
at the reversible side. 

Now take an t-proof of S(A * B) ==- S(A * B). Recall that the last rule 
applied in this proof is the reversible rule. Consider the proof minus this last rule. 
Because the exponentials now prefixing the 'freed' subformulas are of type '?' (since 
components of the stringo translation of a reversible formula always are), we can 
add exponentials to obtain 1uS(A * B), then add the appropriate exponentials 
OA, OB to S(A) and S(B) and apply the rule in order to obtain D (A * B). -H 

The above construction generated a set of LKtq-proofs, complete for classical 
provability, and by its uniformity hinted at the existence of a complete subsystem 

9Sous les paves, la plage. 
10For the record: we had a jolly good time deriving specific examples of constrictive morphisms using 

Tanel Tammet's LL-theorem-prover, cf. [42]. 
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of LKtvq Therefore it was only natural to wonder about the structure of LL- 
derivations of S-translated classical sequents, which we will call S-sequents. 

DEFINITION 27 (S-proofs). A sequent a of linear formulas is said to be an S- 
sequent if it is the stringo translation of an LKtq-sequent, i.e., if it is of the form 

?S (F),!SS(A) ==S ?(A), ?!S (E) . 

It is said to be a sub-S-sequent if all formulas occurring are subformulas of string 
translations of LKtq-formulas i.e., if it is of the form 

S (0), ?S (0%) ?! S (0/), ?S (F), !S (A) ==~ S (A), ?! S(E), ?S (T//), !S (T%) S (T). 

Similarly we can speak of S-proofs meaning that all sequents occurring are sub-S- 
sequents. 

This is what we found: 

LEMMA 28 (:-lemma). Take a sub-S-sequent C: 

S (0E), ?S (0%') ?! S ((0)), ?S (F), ! S(A) ==~ S (A), ?! S(E), !?S (V), !S (T'), S (T) 

and define 

l(u) = ?@', ?",'",Y'' - + - T atoms(?, T) + I IRR(,, T) , 

where atoms(?, T) is the multiset of atoms occurring in 0, T, and IRR(?, T) the 
multiset of the irreversible formulas in 0, T. If a is provable in LL, then Il(a) < 1 
and any S-proof of a will wholly consist in sequents a' with Il(u') < 1. 

PROOF. By induction on derivations in LL. In case of the rules for the binary 
connectives, use the fact that components of a reversible formula S (A) are of type'?', 
those of an irreversible one are of type '!'. 

Note however that the constraint described by the lemma is not nearly as strict 
as the one imposed upon LK7-derivations. If one would like to get closer to LK7, 
one may restrict the form of linear derivations of S-sequents still further. 

DEFINITION 29 (7', LL-). Take an LL-sequent u: 

F, !A - ?A, E 

where no formula in F (respectively E) begins with a '!' (respectively '?'), and define 
f'(a) = IF, E1. By LL- we mean LL restricted to sequents a with fl'(a) < 1. 

That is, LL- (which, by the way, is easily seen to be closed under a reasonable 
sequent version of cut-elimination) is restricted to the use of sequents in which there 
is at most one formula which is not of type '?'. 

Then any S-proof in LL- is, modulo some negligible permutations of structural 
rules, the decoration of an LK7-proof. 
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FIGURE 5. Additivation ce, and multiplicativation ,u. 

5.7. Plug in 0's! As already observed in the preliminary remarks of Section 2.2 
the additive and multiplicative formulations of the rules for the binary connectives 
are interderivable by means of the structural rules. This interderivability can be used 
to define two operators, say a and ,u, which act on an LK(tq)-proof 7r by replacing 
additive connectives occurring in formulas introduced in an axiom or by weakening 
by their multiplicative analogues and replacing all occurrences of multiplicative 
rules by their additive simulation, respectively all occurrences of additive rules by 
their multiplicative simulation. The precise actions of a and ,u on occurrences of 
rules for the connectives *m and *a are depicted in Figure 5. 

DEFINITION 30 (0-proofs). A 0-proof of a sequent A ., B ===> A ., B, is the 
derivation obtained by applying a (in case a = a), or ,u (in case a = m) to the 
q-proofofA *e B ===> A *e B. I.e., OA.aB = a(17AemB), OAemB = j(171AaB). 

As an example, here is fA B: 

A m-A B'- 

A ==> A,B A,B == B 
==- A,A - B B ==A - B 
A -* B === A -* B, A -* B 

A -* B > A -* B 
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In fact, the 0-proofs show us precisely how far we can go in approximating rever- 
sion of the irreversible rules: plugging 0's, we find that whenever 7r is a derivation 
of F, (A * B)s, and the introduction rule R for * is irreversible, then there is a 
derivation a' of F, (A * B), whose last logical rule is R. In fact, R will be the last 
rule of a' modulo a certain number > 0 of contractions. 

Hence irreversible binary connectives might be baptized quasi-reversible! The 
dual of this "quasi-reversion" induces another possible constraint on LKtq-proofs. 

DEFINITION 31 (LK0). A proof of LKtq is an LK0-proof if and only if every at- 
tractive (occurrence of a) formula active in a reversible rule for a binary connective 
is newly born (that is, is either main or has just been weakened), modulo some 
number of weakenings (i.e., if and only if the associated m-a-interspace is w-lucid). 

DEFINITION 32. LK70 := LK7 n LK0. 

THEOREM 33. LKO and LK70 are stable under tq-normalization. 

PROOF. Similar to the proof of Theorem 2 1, now using preservation of w-lucidity. A 
THEOREM 34. All sequents provable in LKtq are provable in LK0, LK'70. 
PROOF. Yep, indeed, again this is because unconstrained rules are derivable with 

the help of cuts in LK0: plug in the 0's! 
In the multiplicative case: 

A === A B === B 
A - AB * BA> B 

A,A _-B A=== B ==- A- B 

- A B, A f. B 
HA SU B 

And for the additive one: 

A -A B ==.B 
A ==> AB A,B == B 

r J A A A ,a- B B F A 

F, F, A a B -A A 

F, A aB - A 

(Note that, in case 7r is q-correct, it remains so after plugging of 0's; in case 7r is 
0-correct, it remains so after plugging of q's. The two constraints are independent.) H 

Unlike for the irreversible rules observe that the 'projections' of Proposition 34 
are not 'blank' when applied to non-attractive formula-occurrences, or to w-lucid 
attractive formula-occurrences! 
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It seems not to be possible to introduce a similar constraint for the reversible 
quantifier-rules. No wonder, as the effect of plugging 0's boils down to a 'pseudo- 
change' of style: the reversible rule for e* is replaced by, say, the a-simulation of the 
irreversible rule for .j. Such a 'style'-change does not exist for the quantifiers. 

The calculi LK0 and LKV0 can be decorated with interesting refinements of 
the pletho-, respectively the stringo-translation: the 0-constraint enables us to 
replace some of the exponentials occurring in these translations by weakening- 
exponentials !, respectively ?. (In fact, these exponentials are internally definable 
inLL: !A -1&A, ?A I= GA.) A formula prefixed by such an exponential cannot 
be subjected to contraction. For details on systems of linear logic with several types 
of exponentials see [3]. Using the terminology of that paper, the following transla- 
tions map LK(0)0 into a bi-colour linear logic, with !/? > !/? (a !/?-promotion is 
not possible in a context containing formulas prefixed by a weak exponential). 

DEFINITION 35 (pletho9 translation). We define inductively a mapping DO of col- 
oured classical formulas to linear formulas by D0 (Xt) = DO (Xq) = X for atoms, 
and by the following tables: 

A B t q A -%A B t q 
It -X .!?A-o!?B !?.AA- o!B t !?A-?B !?A-?!B 
q MA -0?!?B ?!A --o?!B q '.1A 'B | 1A ?!B| 

1X A __A 
t V1XP!A t (!?A)' 
qjj X?!A -?(?!A)j 

THEOREM 36. The mapping of Definition 35 allows for a decoration of LK9. 

PROOF. As the proofs for LKtq, LV. And of course using the 0-constraint. 
Contextual modalities are full permission, because of the clauses in the definition 
that during decoration ask for a 'full-permission' promotion. H 

DEFINITION 37 (stringo9 translation). We define inductively a mapping So of 
coloured classical formulas to linear formulas by So (X8) = X for atoms, and 
by the following tables: 

A B t A aB t _ q 
It I?A _o?BIA I B l?A ?!B _?A !B W W W .W. 

-A-o?B !A -o_!B ________A _?_B _. __A _B 

VXA _1 
t VX?A 7Y77?AiF7 

I q IVX?!A I Iq I(!A)L 

THEOREM 38. The mapping of Definition 37 allows for a decoration of LK70. 

?6. Polaro embedding. In this section, we equip the polarized fragment of LK7, 
denoted by LKp and defined right below, with a stronger tq-stable equivalence 
relation based upon the reversibility properties of classical connectives (cf. Proposi- 
tion 19). As a by-product, we may introduce an alternative noetherian and confluent 
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normalization which is shown to compute the same normal form as tq. Next, as in 
the stringo case, we trace back the path leading to that equivalence by exhibiting an 
even more energy-sparing translation in LL that generates it. This so-called polaro 
translation is in fact Girard's translation devised for LC which trivially extends 
to LKV. 

DEFINITION 39 (polarized proofs). An LKtq-proof is said to be polarized if a non- 
atomic formula occurrence is reversible if and only if it is non-attractive. 

In other words, occurrences of right (respectively left) reversible binary connec- 
tives and quantifiers are coloured t (respectively q), and negation rules preserve 
attractivity, or equivalently flip colours (i.e., AV if and only if (-A)'). Because: 
A, is attractive if and only if (-iAj> is irreversible which is the case if and only 
if it is attractive by polarization. Since negation flips sides, in order to preserve 
attractivity, it has to flip colours as well. Intuitively this just means that polarized 
negation will be readable in LL as a mere change of side, i.e., as a real involutive 
construct. 

DEFINITION 40 (LKp c LK7). An LK7-proof is in LKV if and only if it is polar- 
ized. 

Commutation of reversible rules is invariant with respect to the S-semantics 
in LKV. Indeed, by the q-constraint, reversible rules are translated by the cor- 
responding LL-rules plus a post-modalization which depends on the colour of 
the main formula. Saying a proof is polarized is exactly saying that these post- 
modalizations always are just derelictions. But the difference in order in two blocks 
[reversible rule/dereliction] is semantically invisible in LL. 

Also, there is the antipolarized fragment of LK7, say LKp. 
DEFINITION 41 (antipolarized proofs). An LKtq-proof is said to be antipolarized 

if a non-atomic formula occurrence is reversible if and only if it is attractive. 
This time negation rules preserve colours or equivalently flip attractivity. Let q be 

an antipolarized q-proof, then S (q)* is the identity. Since, now the irreversible rules 
get a mere dereliction as post-modalization. Just commute that dereliction and the 
reversible rule below in S (q) (which is easily seen to be invisible semantically, maybe 
a little less than easily in the additive case) and what we find is an expansion (see the 
definition below) of an q-proof of LL, hence is interpreted by a semantic identity 
(for the linear denotation of all expanded q-proofs is the identity). 

Since attractive non-atomic formulas are reversible in LK7p, there is another way 
to constrict irreversible rules and map antipolarized LKtq-proofs to LKV, namely 
to reverse their attractive non-atomic active formulas, which leads to different con- 
stricted forms. Contrariwise, we lose that option in constricting polarized LKtq_ 
proofs, which is an indication of LKp's sobriety. 

Let A be an occurrence of a non-atomic formula in a proof r. The expansion of A 
in r yields a proof 7re, which is obtained by replacing in r all axiom rules introducing 
an ancestor of A by I/A- 

Let 7r be a proof of F > A, A f. B. The reversion of A f. B in 7r yields a 
proof 7rr, which is obtained by: 
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1. expanding A A B; 
2. erasing (necessarily right) implication rules whose main formulas are ancestors 

of A A B; 
3. transferring structural rules on ancestors of A A B to their components 

A and B; 
4. adding as a last rule the implication rule to obtain A A B. 
Let 7r be a proof of f, A A B = A. The reversion of A a B in 7r yields a 

proof 7ir, which is obtained by: 
1. expanding A A B; 
2. projecting n along A, that is to say erasing (necessarily left) implication rules 

whose main formulas are ancestors of A B and their premise containing the 
active B; then transferring structural rules on ancestors of A A B to A; 

3. projecting n along B as well; 
4. adding as last rule between the resulting two projections above a left implication 

rule in order to get A A B. 
Of course reversion is precisely what happens when one eliminates the cut intro- 

duced in the proof of reversibility (Proposition 19). And there are similar reversions 
for each connective and for each of the quantifiers: the formula occurrence to be 
reversed must be ... reversible. Reversion can be internalized, as can be shown by 
careful computation, as long as the formula to be reversed is polarized. 

LEMMA 42 (internal reversion). Let 7co be a proof of LK , then: 
pro '/ 

F=A,A SOB A OB ==A OB 
F =>A,A A _T~B 

tq-reduces to 0 when A A B is t and i0 when A A B is q. 
Similar internalizations may be computed for additives and quantifiers. In the 

case of negation something expected happens: 
7t 

F ==- A,(-As' ( A8' s 
F v?~ A, (-Ag' 

reduces to 7rr if and only if e is q and a' is t; so that only reversion of colour-'flipping' 
negations can be internalized; moreover the reversion has to take place on the side 
where the negation is reversible (right (respectively left) side if E is q (respectively t)). 

LEMMA 43. Consider in LK7: 

FrAs AAs FAs AA.S 

FA and F,A 
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where the cutformula A, is reversible, and As is main in a logical rule. Then both 
proofs have a common reduct. 

PROOF. Note that A, is non-attractive, but since As is main, it is 7ri's turn to 
move in an S2-step, unless As is also main, in which case the two proofs are the 
same and the lemma holds. Therefore, let us suppose that A, is not main in the 
left-most derivation. Perform there the S2-step, followed by all the n L-steps on 
the leaves corresponding to logical introductions in the tree of As's ancestors. Let 
7rij denote the subproof(s) of nr corresponding to the premise(s) of ri's final rule. 
Then, because of the q-constraint, if an S-step is applicable, it will be (some copy 
of) 7rij that moves; perform all these S-steps (at most 2n in the multiplicative case 
and at most n in the additive case). Now turning to the right-most proof: perform 
the L-step to unleash the same subproof(s) 7rij of r1; then perform the following 
S-steps also. Both ways of reducing lead to the same derivation. H 

The perturbation has vanished as in the case of q-expansion in A-calculus: 
(Ax (M)x)N -* (M)N. Let us stress that both the q-constraint and the polar- 
ization confederate here in order to yield the result. 

We now can define an alternative way of 'computing' LK17-proofs by substituting 
a reversion step for the structural step S2 whenever the reversible cutformula is 
polarized (non-attractive): let's call it the tqr-protocol. The lemma above shows 
that this change in processing cuts doesn't change the normal form: for, it follows 
by easy diagram-chasing that a proof r and any of ir's tqr-reducts have a common 
tq-reduct. But might not the new protocol miss that normal form by running 
eternally? 

THEOREM 44. The tqr-protocol is strongly normalizing. 
PROOF. According to Lemma 42, this new normalization may be simulated by 

the usual tq-protocol through the embedding consisting in plugging the appropriate 
q wherever a polarized reversible formula is active in a logical rule or a cut. There 
may be two ways for so doing when two reversible formulas A and B are both active 
in the same rule, which therefore has to be a unary multiplicative one: in this case 
any order will do. 

When performing a reversion step, one just triggers the reduction of the corre- 
sponding cut on the q-proof in the image. When performing an S1 step nothing 
special happens, neither when performing a logical step except in the special case 
of a multiplicative logical step where the unary multiplicative rule, say A VmB, has 
both active formulas reversible. Then, after the logical step one gets: 

7rA,B I/A 

* B 

= A,B A -A 7rA 

-A,B By B . 7rB 

A,iB A 
-B Be 

which needs commuting the two middle cuts to get the desired result. Note that 
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A in 7EA is attractive because its dual A in rAB is reversible and polarized, hence 
non-attractive. Note also that the same A in 7EA was active in an irreversible rule 
before the logical step. Hence by the q-constraint it was main and still is. Now by 
Lemma 4, the commutation is harmless. (If qB is above qA then just choose the 
logical step so that 7EB goes above 7EA and commute the two middle cuts.) 

To conclude see that once the main-active interspace of a reversible occurrence of 
formula is flattened in this way, it remains so, i.e., that a block [reversible rule/cut] 
where the cutformula is main in the reversible rule is stable by tq-normalization. 
But this is immediate from (the proof of) Lemma 16 (cf. the remark on page 777).H 

Consequently this alternative normalization is also confluent. It had already 
been considered in order to prove cut-elimination for LU by Vauzeilles ([45]), and, 
independently, for LK by Joinet ([18]), and probably in many other proof-theoretic 
inquiries. Presently, the scheme seems to need the structure of formulas due to the 
expansion steps in the reversion transformation which prevents it from having a 
'pure' counterpart. 

6.1. Strong equivalence. Two LK7-proofs are said to be strongly equivalent if 
they only differ up to reversion of active or terminal polarized reversible formulas. 
(We say a formula is terminal if it occurs in the end sequent.) The proviso that 
the reversed formula be active makes sure that the q-constraint is preserved by 
reversion. Indeed, since the formula is non-attractive one may insert a cut with the 
appropriate a without damaging the constraint on the rule below, and obtain the 
reversed form by reducing it. 

PROPOSITION 45 (strong equivalence is tq-stable). If two LK7-proofs are strongly 
equivalent, then so are their normalforms. 

PROOF. It is equivalent to show that if 7i/ only differs from ir up to one active 
polarized reversion, their normal forms are strongly equivalent. We proceed by 
induction on the maximal reduction length of ir (not necessary, in fact just conve- 
nient). If ir is normal, then both are their own normal forms, and the proposition 
holds. 

Therefore suppose the reversion takes place above a cut (in which A, to be reversed 
is active): 

7ro 7Z 1 

r Ars A) AS 

F, A 

Then if an L step applies, the proofs are the same. If an S2 step applies, Lemma 43 
above says their normal forms are the same. If an SI step applies then lro or 7ro has 
to climb up As's tree, and once this is done both proofs only differ up to n active 
polarized reversions, n being the number of axiom and logical leaves in the tree, and 
hence by induction are strongly equivalent. Note that in the case of an axiom leaf, 
since the axiom is absorbed, the reversion of As stops halfway, so that in this case 
one also has to reverse the reduct of the reversed proof, but that's ok. 

Suppose now the reversion takes place elsewhere, then one has just to reverse 
residuals of As to get the reduct of the reversed proof. -1 
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A ==A B ==B 
A, B - A B 
!A, B A XB 

!A,!B -A 0 B 
A ==!A !A,!B =-:!(A X B) 

B -==>!B A,!B =-!(A B) 
A, B = !(A X B) 

A0B ===!(A?B) 

FIGURE 6. Being !-fix is closed under 0. 

Now, since strong equivalence is stable, it is tempting to try to 'materialize' the 
quotient by asking for a fragment of LK' where active reversible formula occur- 
rences are constrained to be main 'up to reversible rules'."1 But, while interesting, 
note that this fragment has to rule out second-order quantification since second 
order logical steps are sure to violate the constraint. 

6.2. The P-translation. We now turn to defining a translation in LL that goes 
together well with the strong equivalence. 

LEMMA 46. Let us say that an LL-formula A is !-fix (respectively ?-fix) if A => !A 
(respectively ?A =- A). Being !-fix (respectively ?-fix) is closed under left (respec- 
tively right) reversible binary connectives and quantifiers (i.e., 0, ED and]3 (respectively 
P, & and V1)). 

As an example, we show in Figure 6 how to prove closure of being !-fix under 0. 
By Lemma 46, the fact that !A (respectively ?A) is !-fix (respectively ?-fix), and 

the additional fact that components of right (respectively left) reversible binary 
connectives and quantifiers get a pre-modalization of type ? (respectively !) in the 
stringo translation we get: 

LEMMA 47. The S translation of a left (respectively right) reversible binary connec- 
tive or quantifier is !-fix (respectively ?-fix). 

This property of the stringo translation in the case of polarized proofs can be 
turned into a very efficient way to pluck exponentials. Take for instance the stringo 
translation of a multiplicative implication with t-coloured components, namely 
!?S(A) -o ?S(B). If we suppose that A and B are non-atomic and that the 
proof within which this implication occurs is polarized, then, since A and B are 
taken to be t, by definition of polarized proofs, they must be right reversible, 
hence by the proposition above we know that S(A) is LL equivalent to ?S(A) and 

1'Added in print: such a syntax has recently been described and investigated by M. Quatrini and 
L. Tortora de Falco, Polarisation despreuves classiques et renversement, to appear in the Comptes Rendus 
de l'Academie des Sciences. 
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similarly for S (B). Now this means that we might as well translate the formula by 
ES(A) -o(B). 

More generally, we can go all the stringo way, now using instead of the good old 
adequate pairs: 

their polaro forms (where means the void modality, as before): 

(vtN VL): ,! (vqN V) :=(? ) 

DEFINITION 48 (polaro translation). We define a mapping of coloured classical 
formulas to linear formulas by P(Xt) = ?X, P(Xq) = !X, P(--A) = P(A)' and 
(fore, 8' c {t,q}): 

P(A8 BE ) = VP(A) v-ovP(B) 

P(Ag a BE) = vfP(A) v-L- P(B) 

P(VX A8) = vXV P(A). 

Explicitly, P is defined by: 

A/B t q A/B t q 
t !A A-oB !A -o?B t A !B A B 
q A AB q ?AA!B ?AAB 

Again the same remark: it suffices to consider implications, negation and univer- 
sal quantifier. 

LEMMA 49. The P-translation of a formula coloured q (respectively t) is !-fix (re- 
spectively ?-fix). 

PROOF. A formula is coloured q if and only if it is (1) a left reversible binary 
connective or quantifier, in which case its P-translation is LL-equivalent to its S- 
translation, hence is !-fix because of Lemma 47; or (2) a q-coloured atom Xq in 
which case P(Xq) = !X which is indeed !-fix; or (3) the negation of a t-coloured 
formula, in which case its P-translation is the LL-negation of a ?-fix formula (here 
again the flipping colours condition shows up). -1 

PROPOSITION 50 (polaro embedding). The translation of Definition 48 allows for 
an inductive mapping of LKV proofs (even of polarized proofs of LKtq) to proofs 
of LL. 

PROOF. A proof of a sequent Ft, Aq ==* At, Eq is now mapped to a proof of 
!P(F), P(A) ==- P(A), ?P(2) (instead of !?S(F), !S(A) ==* ?S(A), ?!S(E) as in the 
simply stringent embedding). Structural rules and promotions, whenever necessary, 
will use cuts on the LL-proofs implementing !- or ?-fixness properties of Lemma 49. 
Reversible and negation rules are now translated with no modalization at all (neither 

12Were A and B left reversible, as in Wap, then their !-fix property would be useless; in this case 
we would seek for a !?-fix property for left reversible connectives (like: !?(!?X 0 !? Y) LL-equivalent to 
!?X 0 !? Y, which is indeed the case) to get the 'sparse' antipolaro translation S(A) -o ?S(B). 
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pre- nor post-), while irreversible rules are translated with a promotion on non- 
attractive active formulas (pre-modalization) and a dereliction on the main formula 
(post-modalization). -1 

Note that this embedding is far from being a decoration. Also, the polaro 
translation is not substitutive: were we to consider second order reduction steps, 
then formulas would appear that are no longer of the P-form. 

?7. FD, LC and their relatives. In this section we will sketch the relation between 
LKtq LK, LKV, and other constructive proof systems for classical logic, namely 
and respectively FD ([32]), )Lu ([33]), LC ([10]). 

Within unrestricted LKtq we recover Parigot's Free Deduction FD. More pre- 
cisely, the obvious mapping from FD into (heterostyle) LK , which consists in 
reading FD-rules as cuts and 'input left' (respectively 'input right') as t (respec- 
tively q), is a homomorphism, i.e., FD-normalization steps are simulable through 
this mapping by means of tq-steps. Hence strong normalization for FD becomes a 
corollary to Theorem 10. Technical details are worked out in [19]. Note that FD's 
binary rules (corresponding to unary LK rules) are taken additive as for instance: 

=OB A -B== Al A A -B== 

so as to escape the logical dilemma. 
Parigot then obtained his classical natural deduction (or Aiu-calculus) from FD 

by restricting proofs, like we did when passing to LK7. In his case the constraint 
consists in demanding that certain premises in the FD-rules be axioms. Just the 
same homomorphism that maps FD into LKtq maps his classical natural deduc- 
tion into LKT, that is the fragment of LK7 where all formulas are t (because all 
formulas are asked to have input to the left). Note that in the restricted system 
heterostyle connectives are no longer needed and one may safely return to the good 
old multiplicative introduction rule 

A => B 
=H A -- B 

Indeed this is what happens in [33]. 
LKT and LKQ defined in [18], [40], [4] are, as said, the fragments of LKa where 

all formulas are t, respectively q. These systems, however, as Girard's LC and LU, 
are formulated as calculi in which sequents contain, possibly, some distinguished 
formula-occurrence: the formula in 'the stoup', separated from other formulas 
by means of a ";", as in A; F =r A, for example. This syntactic trick allows 
the prescription in rules of constraints bearing on main-active interspaces. One 
might in fact formulate LKV in a similar way, and, historically, that is how it was 
done. But observe that in order to formulate LKV explicitly, one has to consider 
all possible colourings of the active formulas and the main formula in a given rule, 
which for each binary connective (multiplicative + additive) amounts to no less than 
(2+ 3) x 23 = 40 distinct rules! (Cf. also [ 14] for more numerological consequences.) 
One will surely prefer the elegant Definition 20. 

Colours t and q corresponds respectively to 'negative' and 'positive' in LC's ter- 
minology. This said, LC, up to the stoup/no-stoup formulation, is but a fragment 
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of LKp, where an additional constraint ties the style of a given connective and the 
colours of its subformulas. For instance the only case where the additive impli- 
cation may be used is At B", whereas all other cases ask for the multiplicative 
implication. 

Of course we here have as a consequence of Theorem 10 that the restriction of 
the tq-normalization to LC is strongly normalizing and confluent. Note also that 
our analysis of the tqr variant of normalization solves the riddle whether LC should 
be normalized the tq-way as the syntactic part of Girard's paper suggests, or the 
tqr-way as the semantic part does (Vauzeilles takes this option in [45]). 

?8. Intuitionistic logic: a 'would-be' deconstructive logic? Retrospectively, we can 
reconstruct certain parts of the above treatment of the proof theory of classical logic 
directly within intuitionistic logic, that former champion of constructivization and 
constructivism. In doing so, moreover, LJ's defects as a 'classifying and clarifying 
tool', will clearly come to the fore. 

From the point of view of reduction of sequent calculus proofs, the 'control 
regained' in the 'constructive' intuitionistic calculus is based upon a brute dissym- 
metrisation: the use of structural rules, especially of contraction, on the rhs is 
forbidden. The well-known embeddings of classical into intuitionistic logic using 
G6del-Gentzen-Kolmogorov-like negative translations (cf. [44]) in fact can be in- 
terpreted as systematic ways of replacing rhs applications of structural rules on a 
formula A by lhs applications of (the same) structural rules on its negation --A. 

This interpretation of negative translations immediately leads to a notion of 
'intuitionistic' or 'negative' (inductive) decoration of LK-derivations, in which LK- 
sequents F ==* A become F0, --A, =- (where (.)? indicates an inductive transla- 
tion of formulas, yet to be determined). 

What becomes of an instance of a cut rule 

-A A 

when we negatively decorate an LK-derivation? 
By induction hypothesis, the premises =- A and A -, have been interpreted 

as --AO ==- , respectively A == . 
Hence we complete our derivation in LJ as follows: 

12o 
1Z? 

* ~ ~~ A? 
--iA?0= -,A0 

Consequently, each instance of cut, when negatively decorated, becomes an in- 
stance of intuitionistic cut in which the positive occurrence of the cutformula is 
main formula in a negation-rule, i.e., in a logical rule. (Cf. the linear decorations, 
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in which each instance of a cut becomes an instance of linear cut in which one of 
the cutformulas is main in an exponential contextual rule, i.e., is of type '!'.) Hence, 
if we consider tq-normalization of LJ-derivations, in case the left cutformula is 
not main in a negation rule, 7r' will be the transported subderivation. So we see 
that, after a negative translation, the structural steps are independent of the colour 
of the formulas, and, by pullback, correspond to a q-type normalization of the 
original LK-derivation. (Indeed, for if the left cutformula (-,A' =A ) is main in a 
negation rule, this is because the positive occurence of the cutformula in the original 
LK-derivation ( => A) is main. 3) 

But clearly the dissymmetrisation imposed by LJ is terribly ad hoc, and not 
obviously better than the dual dissymmetrisation corresponding to the logic in 
which the lhs of the classical sequents are restricted, a logic that might be deemed 
anti-, or better: co-intuitionistic and in fact, in an Al-context, has been studied 
in [16]. There it is called LP and we will stick to that name. 

Classical logic is embeddable in LP by what we might call 'positive' transla- 
tions, which can be interpreted as systematic ways of replacing lhs applications of 
structural rules on a formula A by rhs applications of (the same) structural rules 
on its negation --A. As before, we now obtain a notion of 'co-intuitionistic' or 
'positive' (inductive) decoration of LK-derivations, in which LK-sequents F =r A 
become ==> --Ft, Ab (where (-)b indicates an inductive translation of formulas, to 
be determined later on). 

Having seen the discussion above, it will come as no great surprise that the 
method of pulling back the (tq-)normalization of positively decorated derivations 
naturally leads to t-type normalization of classical proofs. We leave verification to 
the reader. As the 'negative' decoration, the 'positive' decoration has the property 
that its tq-normalization does not depend on colours, i.e., t-reducing = q-reducing. 

Morally, the situation is as in Figure 7, where the arrow from LK to LJ represents 
the negative decoration of LK-derivations, mapping sequents F =r A to intuition- 
istic sequents F0, --A, =- , that from LK to LP the positive decoration, which maps 
a sequent F => A to the co-intuitionistic => - Ft, AK. The arrows from LJ and LP 
to LL stand for the intuitionistic (respectively co-intuitionistic) pletho-decoration, 
which sends sequents F => A (respectively A =- A) to sequents !F* => !A* 
(respectively ?A* =- ?A*). 

Though the above interpretation seems the most natural one, e.g., in the sense 
that it uses as little negations as possible, it is not necessary to use both LJ and LP 
in order to find 'all of tq'. For, as an LP-derivation of . -', Ab is of course 
an LK-derivation of that sequent, we can apply a 'negative' decoration to it, and 
obtain an LJ-derivation of F, --A' ==> . Whence, by 'transitivity of pullbacks', 
tq-normalizing this LJ-derivation corresponds to t-normalizing the underlying clas- 
sical proof! 

Similarly, if one applies a 'positive' decoration to the 'negative' decoration of an 
LK-derivation of F => A will lead to an LP-derivation of => -rF', --'A', whose 
tq-normalization induces the q-normalization of the underlying classical proof. 

13When decorating, in such a case we may skip the negation steps and cut directly on A'. Cf. the 
adjusted pletho-decoration in Section 4.3. 
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LJ 

q 

LK LL 
t 

LP 

FIGURE 7. Decorations and normalizations. 

It is immediate by the above observations, that in both LJ and LP we can simulate 
the tq-normalization of LKtq-derivations, by interpreting sequents Ft, Aq ==- At, Eq 

by sequents - ,--FA, -'A, -' ==* in the first, by == -4FK -_i, AK, -'--& 

in the second case. As a consequence we can simulate the tq-normalization of 
LKtq-derivations in both LKq and LKt, so that no real new algorithms lurk in the 
bicoloured universe. 

Also, except for those with a strong inclination to the left, there is no formal 
reason to prefer the intuitionistic over the co-intuitionistic solution. Either dis- 
symmetrisation in fact blurs our view ('aberration optique') when analysing the 
properties of classical cut elimimation: when turning to the, up till here skipped 
over, translation of formulas, it is obvious that the dissymmetrisation makes a 
'connective-preserving' translation impossible, as LJ lacks a multiplicative disjunc- 
tion and LP lacks a multiplicative conjunction. 

The following translation (.)0 of (multiplicative) tq-classical formulas is induced 
by the negative decoration of LKtq-derivations and the additional demand that the 
number of negations introduced be as small as possible. 

A B t q 
t __1_--A D _--'--B __----A D __----B 
q __1__-A D rB --B D -A 

AAmB t q 
t - PA Am- _mB __A Am- _nB 

q __A Am. --B __A Am _-B 

A VmB t q 
___-A --'--'BBA 

q --'A D _--B -A B _-B 

('D' stands for the (multiplicative) intuitionistic implication.) 

--'A 

q __-A 
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We leave it to the reader to construct the similar translation (-)b induced by the 
positive decoration of LKtq-derivations. 

As an interesting illustration of how the dissymmetrisation imposed by LJ, 
LP stands in the way of a clear analysis of classical cut-elimination, observe that 
the negative decoration of the unary rule for A" Bt is unique. In fact, the nega- 
tive decoration imposes the orientation 'A-cut before B-cut'. Similarly, the positive 
decoration imposes the orientation 'B-cut before A-cut'. However, the critical cases 
for the other binary connectives do allow for two distinct decorations of the unary 
rule, corresponding to the two possible orientations, as in our linear analysis. Cf. 
page 768. 

The translation -i-iA D -i--B with sequents translated as --, A == was 
independently considered by Parigot in [31] to prove strong normalization for his 
classical natural deduction by exhibiting a homomorphism to intuitionistic natural 
deduction. Murthy in [28, 29] applied similar ideas to "control calculi" (that is 
A-calculi extended with exception mechanisms, quite close to )Au-calculus). These 
calculi antedate the proof-theoretic investigations of the normalization of classical 
logic and were recognized to be typable in propositional classical logic by Griffin 
in [13]. At the level of (extended) A-terms those translations induce so-called 
continuation-passing-style compilations into A-terms. Such CPS translations were 
first defined by Plotkin in [37]. 

?9. LK as a programming language. This last section considers LK as a pro- 
gramming language, inasmuch as it provides a way to extend the Krivine/Leivant 
programming method from U2 to LK2. It is kind of a case study in applied proof 
theory that, infine, justifies the energy we invested in formulating a normalization 
for LK. The programming method is explained in [26, 34] and independently was 
considered by Leivant in [27]. A program consists in a 'totality proof' that is a 
proof that an equational system E defines a total function f. This proof is shown 
to always be an implementation of the equational system, which roughly means that 
cut with (a proof representing) an integer n, the totality proof will normalize to (a 
proof representing) an integer m such that f (n) = m is derivable in E. However 
in LK it needs a special device (a so-called converter) to know which integer is rep- 
resented by a given proof. We will give a precise formulation of the "programming 
theorem" at the end of this section. First, we need to add equational reasoning to 
LK2 and LL. Let an equational theory E be given, then if t = t' holds in E we 
allow such rules as: 

F A AA(t) F,_A_(t) A 

F , A,A(t') FA(t') - A. 

Note that there is an obvious extension of tq-normalization to this extended calcu- 
lus; also the strong normalization theorem evidently continues to hold. Second, we 
need classical integers: 
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this is the usual second order definition of integers (we take the implication's style 
to be multiplicative, colours are as you wish); as well as linear integers: 

N'(x) := VX ((!(Vz (X(z) - X(Sz)))) -o (X(0) -oX(x)) 

Up to the permutations of left implication rules and weak equivalence, there is a 
unique normal proof without equational reasoning, of ==- N'(Sno) which is: 

X (0) => X (0) X(SO) =, X (SO) ... X(Sno) ='> X(SnO) 

x(o), x(o) o X(so),... , X(Sn-l0) -o X(SnO) =,> X(sno) 
X(0), VZ (X(Z) -o X(SZ)), ... , VZ (X(z) -o X(Sz)) =' X(Sno) 

X(O), !Vz (X(z) -o X(Sz)) ==> X(Sno) 

- (!Vz (X(z) -o X(Sz))) -o (X(O) -o X(Sno)) 

=* N'(SnO) 

Now let ir be a normal derivation with equational reasoning of =- N' (t) and let 
Oir denote the number of axioms in ir minus one; then ir "contains" an equational 
proof of t = S~O. Giving a precise meaning to this, a task which we leave to the 
reader, is merely a matter of describing all ways one can possibly add equational 
reasoning to a proof such as the unique proof displayed above. 

A slight extension of that property, which will be what we actually use in the 
sequel, is: any normal proof 7r of ==- ?N'(t) ends, modulo contracted weakenings, 
with an instance of dereliction and hence also contains an equational proof of 
t = s"O. 

Indeed, for any normal proof net proving ?VX F it is easily seen that two atoms 
X and X' above two different premises of the conclusion ?VX F cannot be conclu- 
sions of the same axiom node, for if they do then their respective forall's, the ones 
they are above, might be linked in a correction graph one to the other (because their 
premise contain the atom which the other one binds, in other words eigenvariables 
are the same) and this produces a cycle (we use the correctness criterion extended to 
quantifiers as presented in [11]). Then, provided that F has no predicate variables 
other than X, any such proof net has to be a contraction on some number, say p, of 
proof structures with only conclusion VX F, each of them with acyclic correction 
graphs. Now any normal proof structure with acyclic correction graphs and with 
N' as only conclusion is in fact a proof net, i.e., comes from sequent calculus. So 
p = 1 for any normal proof net proving ?N', and any of its sequent versions has 
to end with a dereliction (would the proof net only come from sequent calculus 
augmented with the juxtaposition rule: 

r A 
F,A 

then it could be mapped back to that augmented sequent calculus as a juxtaposition 
of p > 1 sequent proofs of =- N' followed by p - 1 contractions; a remark that 
we will use at the very, very end of the paper). 

We call z a totality proof for f if it proves N(x) = N(f (x)); we say that X is 
a converter if it is a skeleton of some LL-proof of D(N(x)) => ?N'(x) (where 
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D stands for the pletho decoration). (Note that there is some undeterminism in the 
skeleton operation since one has to choose colours on the way back to LK.) 

Say a converter is standard if the LL-proof of which it is a skeleton is a strip 
of its pletho-decoration, i.e., differs from this decoration only up to superfluous 
exponentials (cf. [3]). 

We now have to make sure that converters exist. Let (wi) denote the modalities 
used in D (N(x)). The induction scheme associated to that species of integer is: 

base 

step 

-, Z(O) 

Z(z) , Z(Sz) , L16Z(0) 07Z(x) ==? L8Z(X) 

] ?2(EL3Z(Z) -0 L14Z(SZ)) L6Z(O) -0 L17Z(X) ==> L08Z(X) 

,> L8Vz 32(?3Z(Z) -o 04Z(Sz)) L]5(L16Z(O) -0 L17Z(X)) ==* L]8Z(X) 

(LIVZ ?2(?3Z(Z) -0 U4Z(Sz))) -o L5(?16Z(O) -0 L17Z(x)) ==, 08Z(x) 

VX ?o {O(iVZ 02(0Z3X(z) -0 U4X(Sz))) -0 05(06X(O) -0 [I7X(x))} =0 [I8Z(x) 

D(N(x)) ==> L?8Z(X) 

where it is enough to suppose ?8 of type ? when O-0 and EI5 are so. 

With ?I8 =?, Z = N', step: 

!(Vz (X(z) -o X(Sz))) ==> !(Vz (X(z) -o X(Sz))) X(O) ==> X(O) X(x) =>" X(x) 

(!(Vz (X(z) -o X(Sz)))) -o (X(O) - X(x)), !(Vz (X(z) -o X(Sz))), X(O) ===> X(x) 
N'(x), !(Vz (X(z) -o X(Sz))), X(O) ==> X(x) X(Sx) ==> X(Sx) 

N'(x), !(Vz (X(z) -o X(Sz))), X(O), X(x) -o X(Sx) ===> X(Sx) 

N'(x), !(Vz (X(z) -o X(Sz))), X(O), !(Vz (X(z) -o X(Sz))) ==> X(Sx) 

N'(x), !(Vz (X(z) X(Sz))), X(O) ==- X(Sx) 

N'(x) = (!(Vz (X(z) X(Sz)))) -o (X(O) -o X(Sx)) 

N'(x) =:>N'(Sx) 

where exponentials are introduced on main formulas only, which is enough to be a 
strip of some decoration of the skeleton, and base: 

X(O) == X(O) 
!(Vz (X(z) X(Sz))), X(O) ==* X(O) 

= (!(Vz (X(z) X(Sz)))) -o (X(O) -c X(O)) 
==> N'(O) 

one gets a proof of D (N (x)) =* ?N' (x), the skeleton of which is a converter, even 
a standard one. 
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THEOREM 51 (programming theorem). Let z be a totality prooffor f, X a standard 
converter and o a proof of * N(t). Then the normalform ro of: 

CO) TX 

- N(t) N (x) N (f (x)) N (f (x)) ^- K (f (x)) 
;;> N(f (t)) 

contains an equationalproof of S"O'0 = f (t). 

PROOF. The adjusted pletho-decoration D- (r) of 7r = cut(co, ,X) strips to a 
proof r' of =* ?N'(f (t)), since X is standard. By the simulation theorem, 
Theorem 9, any normalization of 7r to 7ro is simulated by some normalization 
of D-(7r) to the normal form D - (7ro) = D (7ro) which, because normalization 
preserves stripping, strips to the normal form of or'. Then nro is a skeleton of that 
normal form which is a normal proof of == N'(f (t)). But then it contains an 
equational proof of S~0700 = f(t). -i 

Now the reader might ask about non-standard converters. In that case the result, 
i.e., the equational proof of f (t) equals something, must be read in LL, since we 
don't know how to map back the conversion as a normalization in LK. 

THEOREM 52 (second programming theorem). Let T be a totality prooffor f , X' a 
proof of D(N(f (x))) * ?N'(f (x)) and co a proof of =- N(t). Then the normal 
form ro of: 

D(w) D(T) 

CI 2(N(t)) EID(N(x)) => o'D(N(f (x))) o'1D(N(f (x))) = Nl(f (x)) 

== ?N'(f (t)) 

contains an equationalproof of S~o0 = f (t). 

Of course the two preceding statements generalize to functions of any arity. 
See how natural the formulation of the theorem is, X' being, just by virtue of 

its concluding sequent, a correct converter, converting classical integers to linear 
integers. The reader should compare this to the U-based approaches to this same 
conversion problem in [24, 25, 35]. Another possibility would be the use of a 
calculus enabling the 'fusion' of intuitionistic and classical reasoning (cf. [12]), as 
in [30]. 

Quite surprisingly we even get a stronger result. Suppose one adds to classical 
logic the juxtaposition rule, then the same analysis shows that 7ro will now be a 
juxtaposition of proofs 7ro0 of * N'(f (t)) all containing an equational proof of 
StOiO = f (t). Granted the system is consistent, all 07roi will be equal, but each 
7roi will contain its own equational derivation. Does this hint at the existence of a 
significant classical non-determinism? 












